commit | 8f39d27d56247c9769bb346570bb6e5498caea7a | [log] [tgz] |
---|---|---|
author | Thomas <thomasraoux@google.com> | Wed Oct 12 14:12:03 2022 -0700 |
committer | GitHub <noreply@github.com> | Wed Oct 12 23:12:03 2022 +0200 |
tree | eab199fb051bc80919343e448265b9e4f2363d6a | |
parent | bff6a6b195fbf5cca18c56ef81a96d604e173ce4 [diff] |
Integrate llvm-project at b9898e7ed1ce and bump dependencies (#10740) * llvm-project: b9898e7ed1ce cherry-pick: * 62e7f1ba736e883713541c942beb21cfcea84d12 * 193b8acf414d4ce27fb57646d1659ad785586f88 * 1f7fd5613ec9c880c5f9322604b9178e0572fb83 * mlir-hlo: 2d4a2de7f4b283c6c05a42986b99314509a041d7 * Revert: 9ffa6525d213ac7c0e4b8d2e400364933df58e24 * tensorflow: 0fa4b7efd4a0c9a74cb4f7b6a43290d67d885565 Co-authored-by: Okwan Kwon <okkwon@gmail.com> Co-authored-by: Okwan Kwon <okwan@google.com> Co-authored-by: Mahesh Ravishankar <ravishankarm@google.com> Co-authored-by: Jerry Wu <cheyuw@google.com>
IREE (Intermediate Representation Execution Environment, pronounced as “eerie”) is an MLIR-based end-to-end compiler and runtime that lowers Machine Learning (ML) models to a unified IR that scales up to meet the needs of the datacenter and down to satisfy the constraints and special considerations of mobile and edge deployments.
See our website for project details, user guides, and instructions on building from source.
IREE is still in its early phase. We have settled down on the overarching infrastructure and are actively improving various software components as well as project logistics. It is still quite far from ready for everyday use and is made available without any support at the moment. With that said, we welcome any kind of feedback on any communication channels!
See our website for more information.
IREE is licensed under the terms of the Apache 2.0 License with LLVM Exceptions. See LICENSE for more information.