Getting Started on RISC-V with CMake

This guide walks through cross-compiling IREE core runtime towards the RISC-V Linux platform. Cross-compiling IREE compilers towards RISC-V is not supported at the moment.

Cross-compilation involves both a host platform and a target platform. One invokes compiler toolchains on the host platform to generate libraries and executables that can be run on the target platform.

Prerequisites

You'll need a RISC-V LLVM compilation toolchain and a RISC-V enabled QEMU emulator.

An environment variable RISCV_TOOLCHAIN_ROOT needs to be set to the root directory of the installed GNU toolchain. The variable can be used in building the RISCV target and a LLVM AOT module.

Install Prebuilt RISC-V Tools (RISC-V 64-bit Linux toolchain)

Execute the following script to download the prebuilt RISC-V toolchain and QEMU:

# In IREE source root
$ ./build_tools/riscv/riscv_bootstrap.sh

NOTE:

  • You also need to set RISCV_TOOLCHAIN_ROOT (default at ${HOME}/riscv/toolchain/clang/linux/RISCV).

Configure and build

Host configuration

Build and install at least the compiler tools on your host machine, or install them from a binary distribution:

$ cmake -G Ninja -B ../iree-build-host/ \
    -DCMAKE_C_COMPILER=clang \
    -DCMAKE_CXX_COMPILER=clang++ \
    -DCMAKE_INSTALL_PREFIX=../iree-build-host/install \
    .
$ cmake --build ../iree-build-host/ --target install

Debugging note: if IREE_LLVMAOT_LINKER_PATH is set for targeting RISC-V then the build above will fail, and you should run unset IREE_LLVMAOT_LINKER_PATH.

Target configuration

The following instruction shows how to build for the RISC-V 64-bit Linux machine and 32-bit bare-metal machine. For other RISC-V targets, please refer to riscv.toolchain.cmake as a reference of how to set up the cmake configuration.

RISC-V 64-bit Linux target

$ cmake -G Ninja -B ../iree-build-riscv/ \
  -DCMAKE_TOOLCHAIN_FILE="./build_tools/cmake/riscv.toolchain.cmake" \
  -DIREE_HOST_BINARY_ROOT=$(realpath ../iree-build-host/install) \
  -DRISCV_CPU=rv64 \
  -DIREE_BUILD_COMPILER=OFF \
  -DIREE_BUILD_SAMPLES=ON \
  -DRISCV_TOOLCHAIN_ROOT=${RISCV_TOOLCHAIN_ROOT} \
  .

RISC-V 32-bit bare-metal target

For the RISC-V 32-bit bare-metal config, append the following CMake options

-DRISCV_CPU=rv32-baremetal \
-DIREE_BUILD_TESTS=OFF

Build target

$ cmake --build ../iree-build-riscv/

Test on RISC-V QEMU

NOTE:The following instructions are meant for the RISC-V 64-bit Linux target. For the bare-metal target, please refer to simple_embedding to see how to build a ML workload for a bare-metal machine.

Set the environment variable RISCV_TOOLCHAIN_ROOT if it is not set yet:

$ export RISCV_TOOLCHAIN_ROOT=<root directory of the RISC-V GNU toolchain>

VMVX HAL backend

Translate a source MLIR into IREE module:

$ ../iree-build-host/install/bin/iree-translate \
  -iree-mlir-to-vm-bytecode-module \
  -iree-hal-target-backends=vmvx \
  ${PWD}/iree/samples/models/simple_abs.mlir \
  -o /tmp/simple_abs_vmvx.vmfb

Then run on the RISC-V QEMU:

Set the path to qemu-riscv64 emulator binary in the QEMU_BIN environment variable. If it is installed with riscv_bootstrap.sh, the path is default at ${HOME}/riscv/qemu/linux/RISCV/bin/qemu-riscv64.

$ export QEMU_BIN=<path to qemu-riscv64 binary>
$ ${QEMU_BIN} \
  -cpu rv64,x-v=true,x-k=true,vlen=256,elen=64,vext_spec=v1.0 \
  -L ${RISCV_TOOLCHAIN_ROOT}/sysroot/ \
  ../iree-build-riscv/iree/tools/iree-run-module \
  --driver=vmvx \
  --module_file=/tmp/simple_abs_vmvx.vmfb \
  --entry_function=abs \
  --function_input=f32=-5

Output:

I ../iree/tools/utils/vm_util.cc:227] Creating driver and device for 'vmvx'...
EXEC @abs
f32=5

Dylib LLVM AOT backend

To compile an IREE module using the Dylib LLVM ahead-of-time (AOT) backend for a RISC-V target we need to use the corresponding cross-compile toolchain.

Translate a source MLIR into an IREE module:

$ ../iree-build-host/install/bin/iree-translate \
  -iree-mlir-to-vm-bytecode-module \
  -iree-hal-target-backends=dylib-llvm-aot \
  -iree-llvm-target-triple=riscv64 \
  -iree-llvm-target-cpu=sifive-u74 \
  -iree-llvm-target-abi=lp64d \
  ${PWD}/iree/samples/models/simple_abs.mlir \
  -o /tmp/simple_abs_dylib.vmfb

Then run on the RISC-V QEMU:

$ ${QEMU_BIN} \
  -cpu rv64,x-v=true,x-k=true,vlen=256,elen=64,vext_spec=v1.0 \
  -L ${RISCV_TOOLCHAIN_ROOT}/sysroot/ \
  ../iree-build-riscv/iree/tools/iree-run-module \
  --driver=dylib \
  --module_file=/tmp/simple_abs_dylib.vmfb \
  --entry_function=abs \
  --function_input=f32=-5

Output:

I ../iree/tools/utils/vm_util.cc:227] Creating driver and device for 'dylib'...
EXEC @abs
f32=5

Enable RVV code-gen [Experimental]

Through IREE's vectorization pass and LLVM backend, we can generate RVV VLS(Vector Length Specific) style codes.

$ ../iree-build-host/install/bin/iree-translate \
-iree-mlir-to-vm-bytecode-module \
-iree-hal-target-backends=dylib-llvm-aot \
-iree-llvm-target-triple=riscv64 \
-iree-llvm-target-cpu=sifive-7-rv64 \
-iree-llvm-target-abi=lp64d \
-iree-llvm-target-cpu-features="+m,+a,+d,+experimental-v" \
-riscv-v-vector-bits-min=128 -riscv-v-fixed-length-vector-lmul-max=8 \
/path/to/input.mlir -o /tmp/output-rvv.vmfb

Then run on the RISC-V QEMU:

$ ${QEMU_BIN} \
  -cpu rv64,x-v=true,x-k=true,vlen=256,elen=64,vext_spec=v1.0 \
  -L ${RISCV_TOOLCHAIN_ROOT}/sysroot/ \
  ../iree-build-riscv/iree/tools/iree-run-module --driver=dylib \
  --flagfile=/path/to/flagfile