Add Half library to third_party (#3897)

Add Half library to be able to use f16 to/from f32 conversion in IREE tools.
diff --git a/third_party/half/LICENSE b/third_party/half/LICENSE
new file mode 100644
index 0000000..9e4618b
--- /dev/null
+++ b/third_party/half/LICENSE
@@ -0,0 +1,21 @@
+The MIT License

+

+Copyright (c) 2012-2017 Christian Rau

+

+Permission is hereby granted, free of charge, to any person obtaining a copy

+of this software and associated documentation files (the "Software"), to deal

+in the Software without restriction, including without limitation the rights

+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

+copies of the Software, and to permit persons to whom the Software is

+furnished to do so, subject to the following conditions:

+

+The above copyright notice and this permission notice shall be included in

+all copies or substantial portions of the Software.

+

+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

+THE SOFTWARE.

diff --git a/third_party/half/README.txt b/third_party/half/README.txt
new file mode 100644
index 0000000..3a0960c
--- /dev/null
+++ b/third_party/half/README.txt
@@ -0,0 +1,288 @@
+HALF-PRECISION FLOATING POINT LIBRARY (Version 1.12.0)

+------------------------------------------------------

+

+This is a C++ header-only library to provide an IEEE 754 conformant 16-bit 

+half-precision floating point type along with corresponding arithmetic 

+operators, type conversions and common mathematical functions. It aims for both 

+efficiency and ease of use, trying to accurately mimic the behaviour of the 

+builtin floating point types at the best performance possible.

+

+

+INSTALLATION AND REQUIREMENTS

+-----------------------------

+

+Comfortably enough, the library consists of just a single header file 

+containing all the functionality, which can be directly included by your 

+projects, without the neccessity to build anything or link to anything.

+

+Whereas this library is fully C++98-compatible, it can profit from certain 

+C++11 features. Support for those features is checked automatically at compile 

+(or rather preprocessing) time, but can be explicitly enabled or disabled by 

+defining the corresponding preprocessor symbols to either 1 or 0 yourself. This 

+is useful when the automatic detection fails (for more exotic implementations) 

+or when a feature should be explicitly disabled:

+

+  - 'long long' integer type for mathematical functions returning 'long long' 

+    results (enabled for VC++ 2003 and newer, gcc and clang, overridable with 

+    'HALF_ENABLE_CPP11_LONG_LONG').

+

+  - Static assertions for extended compile-time checks (enabled for VC++ 2010, 

+    gcc 4.3, clang 2.9 and newer, overridable with 'HALF_ENABLE_CPP11_STATIC_ASSERT').

+

+  - Generalized constant expressions (enabled for VC++ 2015, gcc 4.6, clang 3.1 

+    and newer, overridable with 'HALF_ENABLE_CPP11_CONSTEXPR').

+

+  - noexcept exception specifications (enabled for VC++ 2015, gcc 4.6, clang 3.0 

+    and newer, overridable with 'HALF_ENABLE_CPP11_NOEXCEPT').

+

+  - User-defined literals for half-precision literals to work (enabled for 

+    VC++ 2015, gcc 4.7, clang 3.1 and newer, overridable with 

+    'HALF_ENABLE_CPP11_USER_LITERALS').

+

+  - Type traits and template meta-programming features from <type_traits> 

+    (enabled for VC++ 2010, libstdc++ 4.3, libc++ and newer, overridable with 

+    'HALF_ENABLE_CPP11_TYPE_TRAITS').

+

+  - Special integer types from <cstdint> (enabled for VC++ 2010, libstdc++ 4.3, 

+    libc++ and newer, overridable with 'HALF_ENABLE_CPP11_CSTDINT').

+

+  - Certain C++11 single-precision mathematical functions from <cmath> for 

+    an improved implementation of their half-precision counterparts to work 

+    (enabled for VC++ 2013, libstdc++ 4.3, libc++ and newer, overridable with 

+    'HALF_ENABLE_CPP11_CMATH').

+

+  - Hash functor 'std::hash' from <functional> (enabled for VC++ 2010, 

+    libstdc++ 4.3, libc++ and newer, overridable with 'HALF_ENABLE_CPP11_HASH').

+

+The library has been tested successfully with Visual C++ 2005-2015, gcc 4.4-4.8 

+and clang 3.1. Please contact me if you have any problems, suggestions or even 

+just success testing it on other platforms.

+

+

+DOCUMENTATION

+-------------

+

+Here follow some general words about the usage of the library and its 

+implementation. For a complete documentation of its iterface look at the 

+corresponding website http://half.sourceforge.net. You may also generate the 

+complete developer documentation from the library's only include file's doxygen 

+comments, but this is more relevant to developers rather than mere users (for 

+reasons described below).

+

+BASIC USAGE

+

+To make use of the library just include its only header file half.hpp, which 

+defines all half-precision functionality inside the 'half_float' namespace. The 

+actual 16-bit half-precision data type is represented by the 'half' type. This 

+type behaves like the builtin floating point types as much as possible, 

+supporting the usual arithmetic, comparison and streaming operators, which 

+makes its use pretty straight-forward:

+

+    using half_float::half;

+    half a(3.4), b(5);

+    half c = a * b;

+    c += 3;

+    if(c > a)

+	    std::cout << c << std::endl;

+

+Additionally the 'half_float' namespace also defines half-precision versions 

+for all mathematical functions of the C++ standard library, which can be used 

+directly through ADL:

+

+    half a(-3.14159);

+    half s = sin(abs(a));

+    long l = lround(s);

+

+You may also specify explicit half-precision literals, since the library 

+provides a user-defined literal inside the 'half_float::literal' namespace, 

+which you just need to import (assuming support for C++11 user-defined literals):

+

+    using namespace half_float::literal;

+    half x = 1.0_h;

+

+Furthermore the library provides proper specializations for 

+'std::numeric_limits', defining various implementation properties, and 

+'std::hash' for hashing half-precision numbers (assuming support for C++11 

+'std::hash'). Similar to the corresponding preprocessor symbols from <cmath> 

+the library also defines the 'HUGE_VALH' constant and maybe the 'FP_FAST_FMAH' 

+symbol.

+

+CONVERSIONS AND ROUNDING

+

+The half is explicitly constructible/convertible from a single-precision float 

+argument. Thus it is also explicitly constructible/convertible from any type 

+implicitly convertible to float, but constructing it from types like double or 

+int will involve the usual warnings arising when implicitly converting those to 

+float because of the lost precision. On the one hand those warnings are 

+intentional, because converting those types to half neccessarily also reduces 

+precision. But on the other hand they are raised for explicit conversions from 

+those types, when the user knows what he is doing. So if those warnings keep 

+bugging you, then you won't get around first explicitly converting to float 

+before converting to half, or use the 'half_cast' described below. In addition 

+you can also directly assign float values to halfs.

+

+In contrast to the float-to-half conversion, which reduces precision, the 

+conversion from half to float (and thus to any other type implicitly 

+convertible from float) is implicit, because all values represetable with 

+half-precision are also representable with single-precision. This way the 

+half-to-float conversion behaves similar to the builtin float-to-double 

+conversion and all arithmetic expressions involving both half-precision and 

+single-precision arguments will be of single-precision type. This way you can 

+also directly use the mathematical functions of the C++ standard library, 

+though in this case you will invoke the single-precision versions which will 

+also return single-precision values, which is (even if maybe performing the 

+exact same computation, see below) not as conceptually clean when working in a 

+half-precision environment.

+

+The default rounding mode for conversions from float to half uses truncation 

+(round toward zero, but mapping overflows to infinity) for rounding values not 

+representable exactly in half-precision. This is the fastest rounding possible 

+and is usually sufficient. But by redefining the 'HALF_ROUND_STYLE' 

+preprocessor symbol (before including half.hpp) this default can be overridden 

+with one of the other standard rounding modes using their respective constants 

+or the equivalent values of 'std::float_round_style' (it can even be 

+synchronized with the underlying single-precision implementation by defining it 

+to 'std::numeric_limits<float>::round_style'):

+

+  - 'std::round_indeterminate' or -1 for the fastest rounding (default).

+

+  - 'std::round_toward_zero' or 0 for rounding toward zero.

+

+  - std::round_to_nearest' or 1 for rounding to the nearest value.

+

+  - std::round_toward_infinity' or 2 for rounding toward positive infinity.

+

+  - std::round_toward_neg_infinity' or 3 for rounding toward negative infinity.

+

+In addition to changing the overall default rounding mode one can also use the 

+'half_cast'. This converts between half and any built-in arithmetic type using 

+a configurable rounding mode (or the default rounding mode if none is 

+specified). In addition to a configurable rounding mode, 'half_cast' has 

+another big difference to a mere 'static_cast': Any conversions are performed 

+directly using the given rounding mode, without any intermediate conversion 

+to/from 'float'. This is especially relevant for conversions to integer types, 

+which don't necessarily truncate anymore. But also for conversions from 

+'double' or 'long double' this may produce more precise results than a 

+pre-conversion to 'float' using the single-precision implementation's current 

+rounding mode would.

+

+    half a = half_cast<half>(4.2);

+    half b = half_cast<half,std::numeric_limits<float>::round_style>(4.2f);

+    assert( half_cast<int, std::round_to_nearest>( 0.7_h )     == 1 );

+    assert( half_cast<half,std::round_toward_zero>( 4097 )     == 4096.0_h );

+    assert( half_cast<half,std::round_toward_infinity>( 4097 ) == 4100.0_h );

+    assert( half_cast<half,std::round_toward_infinity>( std::numeric_limits<double>::min() ) > 0.0_h );

+

+When using round to nearest (either as default or through 'half_cast') ties are 

+by default resolved by rounding them away from zero (and thus equal to the 

+behaviour of the 'round' function). But by redefining the 

+'HALF_ROUND_TIES_TO_EVEN' preprocessor symbol to 1 (before including half.hpp) 

+this default can be changed to the slightly slower but less biased and more 

+IEEE-conformant behaviour of rounding half-way cases to the nearest even value.

+

+    #define HALF_ROUND_TIES_TO_EVEN 1

+    #include <half.hpp>

+    ...

+    assert( half_cast<int,std::round_to_nearest>(3.5_h) 

+         == half_cast<int,std::round_to_nearest>(4.5_h) );

+

+IMPLEMENTATION

+

+For performance reasons (and ease of implementation) many of the mathematical 

+functions provided by the library as well as all arithmetic operations are 

+actually carried out in single-precision under the hood, calling to the C++ 

+standard library implementations of those functions whenever appropriate, 

+meaning the arguments are converted to floats and the result back to half. But 

+to reduce the conversion overhead as much as possible any temporary values 

+inside of lengthy expressions are kept in single-precision as long as possible, 

+while still maintaining a strong half-precision type to the outside world. Only 

+when finally assigning the value to a half or calling a function that works 

+directly on halfs is the actual conversion done (or never, when further 

+converting the result to float.

+

+This approach has two implications. First of all you have to treat the 

+library's documentation at http://half.sourceforge.net as a simplified version, 

+describing the behaviour of the library as if implemented this way. The actual 

+argument and return types of functions and operators may involve other internal 

+types (feel free to generate the exact developer documentation from the Doxygen 

+comments in the library's header file if you really need to). But nevertheless 

+the behaviour is exactly like specified in the documentation. The other 

+implication is, that in the presence of rounding errors or over-/underflows 

+arithmetic expressions may produce different results when compared to 

+converting to half-precision after each individual operation:

+

+    half a = std::numeric_limits<half>::max() * 2.0_h / 2.0_h;       // a = MAX

+    half b = half(std::numeric_limits<half>::max() * 2.0_h) / 2.0_h; // b = INF

+    assert( a != b );

+

+But this should only be a problem in very few cases. One last word has to be 

+said when talking about performance. Even with its efforts in reducing 

+conversion overhead as much as possible, the software half-precision 

+implementation can most probably not beat the direct use of single-precision 

+computations. Usually using actual float values for all computations and 

+temproraries and using halfs only for storage is the recommended way. On the 

+one hand this somehow makes the provided mathematical functions obsolete 

+(especially in light of the implicit conversion from half to float), but 

+nevertheless the goal of this library was to provide a complete and 

+conceptually clean half-precision implementation, to which the standard 

+mathematical functions belong, even if usually not needed.

+

+IEEE CONFORMANCE

+

+The half type uses the standard IEEE representation with 1 sign bit, 5 exponent 

+bits and 10 mantissa bits (11 when counting the hidden bit). It supports all 

+types of special values, like subnormal values, infinity and NaNs. But there 

+are some limitations to the complete conformance to the IEEE 754 standard:

+

+  - The implementation does not differentiate between signalling and quiet 

+    NaNs, this means operations on halfs are not specified to trap on 

+    signalling NaNs (though they may, see last point).

+

+  - Though arithmetic operations are internally rounded to single-precision 

+    using the underlying single-precision implementation's current rounding 

+    mode, those values are then converted to half-precision using the default 

+    half-precision rounding mode (changed by defining 'HALF_ROUND_STYLE' 

+    accordingly). This mixture of rounding modes is also the reason why 

+    'std::numeric_limits<half>::round_style' may actually return 

+    'std::round_indeterminate' when half- and single-precision rounding modes 

+    don't match.

+

+  - Because of internal truncation it may also be that certain single-precision 

+    NaNs will be wrongly converted to half-precision infinity, though this is 

+    very unlikely to happen, since most single-precision implementations don't 

+    tend to only set the lowest bits of a NaN mantissa.

+

+  - The implementation does not provide any floating point exceptions, thus 

+    arithmetic operations or mathematical functions are not specified to invoke 

+    proper floating point exceptions. But due to many functions implemented in 

+    single-precision, those may still invoke floating point exceptions of the 

+    underlying single-precision implementation.

+

+Some of those points could have been circumvented by controlling the floating 

+point environment using <cfenv> or implementing a similar exception mechanism. 

+But this would have required excessive runtime checks giving two high an impact 

+on performance for something that is rarely ever needed. If you really need to 

+rely on proper floating point exceptions, it is recommended to explicitly 

+perform computations using the built-in floating point types to be on the safe 

+side. In the same way, if you really need to rely on a particular rounding 

+behaviour, it is recommended to either use single-precision computations and 

+explicitly convert the result to half-precision using 'half_cast' and 

+specifying the desired rounding mode, or synchronize the default half-precision 

+rounding mode to the rounding mode of the single-precision implementation (most 

+likely 'HALF_ROUND_STYLE=1', 'HALF_ROUND_TIES_TO_EVEN=1'). But this is really 

+considered an expert-scenario that should be used only when necessary, since 

+actually working with half-precision usually comes with a certain 

+tolerance/ignorance of exactness considerations and proper rounding comes with 

+a certain performance cost.

+

+

+CREDITS AND CONTACT

+-------------------

+

+This library is developed by CHRISTIAN RAU and released under the MIT License 

+(see LICENSE.txt). If you have any questions or problems with it, feel free to 

+contact me at rauy@users.sourceforge.net.

+

+Additional credit goes to JEROEN VAN DER ZIJP for his paper on "Fast Half Float 

+Conversions", whose algorithms have been used in the library for converting 

+between half-precision and single-precision values.

diff --git a/third_party/half/UPDATING.md b/third_party/half/UPDATING.md
new file mode 100644
index 0000000..3a8d2fe
--- /dev/null
+++ b/third_party/half/UPDATING.md
@@ -0,0 +1,8 @@
+This project is from: https://sourceforge.net/p/half/code/HEAD/tree/
+
+This can be updated by running:
+```shell
+curl http://svn.code.sf.net/p/half/code/trunk/include/half.hpp > half.hpp
+curl http://svn.code.sf.net/p/half/code/trunk/README.txt > README.txt
+curl http://svn.code.sf.net/p/half/code/trunk/LICENSE.txt > LICENSE.txt
+```
\ No newline at end of file
diff --git a/third_party/half/half.hpp b/third_party/half/half.hpp
new file mode 100644
index 0000000..e9d1aca
--- /dev/null
+++ b/third_party/half/half.hpp
@@ -0,0 +1,4023 @@
+// half - IEEE 754-based half-precision floating point library.
+//
+// Copyright (c) 2012-2017 Christian Rau <rauy@users.sourceforge.net>
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in
+// all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+// Version 1.12.0
+
+/// \file
+/// Main header file for half precision functionality.
+
+#ifndef HALF_HALF_HPP
+#define HALF_HALF_HPP
+
+/// Combined gcc version number.
+#define HALF_GNUC_VERSION (__GNUC__*100+__GNUC_MINOR__)
+
+//check C++11 language features
+#if defined(__clang__)										//clang
+	#if __has_feature(cxx_static_assert) && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
+		#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
+	#endif
+	#if __has_feature(cxx_constexpr) && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
+		#define HALF_ENABLE_CPP11_CONSTEXPR 1
+	#endif
+	// Do not use NOEXCEPT.  Not approved for google3 yet.
+	// #if __has_feature(cxx_noexcept) && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
+	#if 0
+		#define HALF_ENABLE_CPP11_NOEXCEPT 1
+	#endif
+	// Do not use user literals.  Not approved for google3 yet.
+	// #if __has_feature(cxx_user_literals) && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
+	#if 0
+		#define HALF_ENABLE_CPP11_USER_LITERALS 1
+	#endif
+	#if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) && !defined(HALF_ENABLE_CPP11_LONG_LONG)
+		#define HALF_ENABLE_CPP11_LONG_LONG 1
+	#endif
+/*#elif defined(__INTEL_COMPILER)
+   //Intel C++ #if __INTEL_COMPILER >= 1100 &&
+   !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)		???????? #define
+   HALF_ENABLE_CPP11_STATIC_ASSERT 1 #endif #if __INTEL_COMPILER >= 1300 &&
+   !defined(HALF_ENABLE_CPP11_CONSTEXPR)			???????? #define
+   HALF_ENABLE_CPP11_CONSTEXPR 1 #endif #if __INTEL_COMPILER >= 1300 &&
+   !defined(HALF_ENABLE_CPP11_NOEXCEPT)			???????? #define
+   HALF_ENABLE_CPP11_NOEXCEPT 1 #endif #if __INTEL_COMPILER >= 1100 &&
+   !defined(HALF_ENABLE_CPP11_LONG_LONG)			???????? #define
+   HALF_ENABLE_CPP11_LONG_LONG 1 #endif*/
+#elif defined(__GNUC__)										//gcc
+	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
+		#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
+			#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
+		#endif
+		#if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
+			#define HALF_ENABLE_CPP11_CONSTEXPR 1
+		#endif
+		#if HALF_GNUC_VERSION >= 406 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
+			#define HALF_ENABLE_CPP11_NOEXCEPT 1
+		#endif
+		#if HALF_GNUC_VERSION >= 407 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
+			#define HALF_ENABLE_CPP11_USER_LITERALS 1
+		#endif
+		#if !defined(HALF_ENABLE_CPP11_LONG_LONG)
+			#define HALF_ENABLE_CPP11_LONG_LONG 1
+		#endif
+	#endif
+#elif defined(_MSC_VER)										//Visual C++
+#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_CONSTEXPR)
+#define HALF_ENABLE_CPP11_CONSTEXPR 1
+#endif
+#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_NOEXCEPT)
+#define HALF_ENABLE_CPP11_NOEXCEPT 1
+#endif
+#if _MSC_VER >= 1900 && !defined(HALF_ENABLE_CPP11_USER_LITERALS)
+#define HALF_ENABLE_CPP11_USER_LITERALS 1
+#endif
+#if _MSC_VER >= 1600 && !defined(HALF_ENABLE_CPP11_STATIC_ASSERT)
+#define HALF_ENABLE_CPP11_STATIC_ASSERT 1
+#endif
+#if _MSC_VER >= 1310 && !defined(HALF_ENABLE_CPP11_LONG_LONG)
+#define HALF_ENABLE_CPP11_LONG_LONG 1
+#endif
+#define HALF_POP_WARNINGS 1
+#pragma warning(push)
+#pragma warning(disable : 4099 4127 4146)  // struct vs class, constant in if,
+                                           // negative unsigned
+#endif
+
+//check C++11 library features
+#include <utility>
+#if defined(_LIBCPP_VERSION)								//libc++
+	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
+#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
+#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
+#endif
+#ifndef HALF_ENABLE_CPP11_CSTDINT
+#define HALF_ENABLE_CPP11_CSTDINT 1
+#endif
+#ifndef HALF_ENABLE_CPP11_CMATH
+#define HALF_ENABLE_CPP11_CMATH 1
+#endif
+#ifndef HALF_ENABLE_CPP11_HASH
+#define HALF_ENABLE_CPP11_HASH 1
+#endif
+#endif
+#elif defined(__GLIBCXX__)									//libstdc++
+	#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103
+		#ifdef __clang__
+#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_TYPE_TRAITS)
+#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
+#endif
+#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CSTDINT)
+#define HALF_ENABLE_CPP11_CSTDINT 1
+#endif
+#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_CMATH)
+#define HALF_ENABLE_CPP11_CMATH 1
+#endif
+#if __GLIBCXX__ >= 20080606 && !defined(HALF_ENABLE_CPP11_HASH)
+#define HALF_ENABLE_CPP11_HASH 1
+#endif
+#else
+#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CSTDINT)
+#define HALF_ENABLE_CPP11_CSTDINT 1
+#endif
+#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_CMATH)
+#define HALF_ENABLE_CPP11_CMATH 1
+#endif
+#if HALF_GNUC_VERSION >= 403 && !defined(HALF_ENABLE_CPP11_HASH)
+#define HALF_ENABLE_CPP11_HASH 1
+#endif
+#endif
+#endif
+#elif defined(_CPPLIB_VER)									//Dinkumware/Visual C++
+	#if _CPPLIB_VER >= 520
+#ifndef HALF_ENABLE_CPP11_TYPE_TRAITS
+#define HALF_ENABLE_CPP11_TYPE_TRAITS 1
+#endif
+#ifndef HALF_ENABLE_CPP11_CSTDINT
+#define HALF_ENABLE_CPP11_CSTDINT 1
+#endif
+#ifndef HALF_ENABLE_CPP11_HASH
+#define HALF_ENABLE_CPP11_HASH 1
+#endif
+#endif
+#if _CPPLIB_VER >= 610
+#ifndef HALF_ENABLE_CPP11_CMATH
+#define HALF_ENABLE_CPP11_CMATH 1
+#endif
+#endif
+#endif
+#undef HALF_GNUC_VERSION
+
+//support constexpr
+#if HALF_ENABLE_CPP11_CONSTEXPR
+	#define HALF_CONSTEXPR			constexpr
+	#define HALF_CONSTEXPR_CONST	constexpr
+#else
+	#define HALF_CONSTEXPR
+	#define HALF_CONSTEXPR_CONST	const
+#endif
+
+//support noexcept
+#if HALF_ENABLE_CPP11_NOEXCEPT
+	#define HALF_NOEXCEPT	noexcept
+	#define HALF_NOTHROW	noexcept
+#else
+	#define HALF_NOEXCEPT
+	#define HALF_NOTHROW	throw()
+#endif
+
+#include <algorithm>
+#include <iostream>
+#include <limits>
+#include <climits>
+#include <cmath>
+#include <cstring>
+#if HALF_ENABLE_CPP11_TYPE_TRAITS
+#include <type_traits>
+#endif
+#if HALF_ENABLE_CPP11_CSTDINT
+	#include <cstdint>
+#endif
+#if HALF_ENABLE_CPP11_HASH
+#include <functional>
+#endif
+
+/// Default rounding mode.
+/// This specifies the rounding mode used for all conversions between
+/// [half](\ref half_float::half)s and `float`s as well as for the half_cast()
+/// if not specifying a rounding mode explicitly. It can be redefined (before
+/// including half.hpp) to one of the standard rounding modes using their
+/// respective constants or the equivalent values of `std::float_round_style`:
+///
+/// `std::float_round_style`         | value | rounding
+/// ---------------------------------|-------|-------------------------
+/// `std::round_indeterminate`       | -1    | fastest (default)
+/// `std::round_toward_zero`         | 0     | toward zero
+/// `std::round_to_nearest`          | 1     | to nearest
+/// `std::round_toward_infinity`     | 2     | toward positive infinity
+/// `std::round_toward_neg_infinity` | 3     | toward negative infinity
+///
+/// By default this is set to `-1` (`std::round_indeterminate`), which uses
+/// truncation (round toward zero, but with overflows set to infinity) and is
+/// the fastest rounding mode possible. It can even be set to
+/// `std::numeric_limits<float>::round_style` to synchronize the rounding mode
+/// with that of the underlying single-precision implementation.
+#ifndef HALF_ROUND_STYLE
+#define HALF_ROUND_STYLE -1  // = std::round_indeterminate
+#endif
+
+/// Tie-breaking behaviour for round to nearest.
+/// This specifies if ties in round to nearest should be resolved by rounding to
+/// the nearest even value. By default this is defined to `0` resulting in the
+/// faster but slightly more biased behaviour of rounding away from zero in
+/// half-way cases (and thus equal to the round() function), but can be
+/// redefined to `1` (before including half.hpp) if more IEEE-conformant
+/// behaviour is needed.
+#ifndef HALF_ROUND_TIES_TO_EVEN
+#define HALF_ROUND_TIES_TO_EVEN 0  // ties away from zero
+#endif
+
+/// Value signaling overflow.
+/// In correspondence with `HUGE_VAL[F|L]` from `<cmath>` this symbol expands to
+/// a positive value signaling the overflow of an operation, in particular it
+/// just evaluates to positive infinity.
+#define HUGE_VALH	std::numeric_limits<half_float::half>::infinity()
+
+/// Fast half-precision fma function.
+/// This symbol is only defined if the fma() function generally executes as fast
+/// as, or faster than, a separate half-precision multiplication followed by an
+/// addition. Due to the internal single-precision implementation of all
+/// arithmetic operations, this is in fact always the case.
+#define FP_FAST_FMAH	1
+
+#ifndef FP_ILOGB0
+	#define FP_ILOGB0		INT_MIN
+#endif
+#ifndef FP_ILOGBNAN
+	#define FP_ILOGBNAN		INT_MAX
+#endif
+#ifndef FP_SUBNORMAL
+	#define FP_SUBNORMAL	0
+#endif
+#ifndef FP_ZERO
+	#define FP_ZERO			1
+#endif
+#ifndef FP_NAN
+	#define FP_NAN			2
+#endif
+#ifndef FP_INFINITE
+	#define FP_INFINITE		3
+#endif
+#ifndef FP_NORMAL
+	#define FP_NORMAL		4
+#endif
+
+
+/// Main namespace for half precision functionality.
+/// This namespace contains all the functionality provided by the library.
+namespace half_float
+{
+	class half;
+
+#if HALF_ENABLE_CPP11_USER_LITERALS
+        /// Library-defined half-precision literals.
+        /// Import this namespace to enable half-precision floating point
+        /// literals:
+        /// ~~~~{.cpp}
+        /// using namespace half_float::literal;
+        /// half_float::half = 4.2_h;
+        /// ~~~~
+        namespace literal {
+        half operator""_h(long double);
+        }
+#endif
+
+        /// \internal
+        /// \brief Implementation details.
+        namespace detail
+	{
+#if HALF_ENABLE_CPP11_TYPE_TRAITS
+        /// Conditional type.
+        template <bool B, typename T, typename F>
+        struct conditional : std::conditional<B, T, F> {};
+
+        /// Helper for tag dispatching.
+        template <bool B>
+        struct bool_type : std::integral_constant<bool, B> {};
+        using std::false_type;
+        using std::true_type;
+
+        /// Type traits for floating point types.
+        template <typename T>
+        struct is_float : std::is_floating_point<T> {};
+#else
+        /// Conditional type.
+        template <bool, typename T, typename>
+        struct conditional {
+          typedef T type;
+        };
+        template <typename T, typename F>
+        struct conditional<false, T, F> {
+          typedef F type;
+        };
+
+        /// Helper for tag dispatching.
+        template <bool>
+        struct bool_type {};
+        typedef bool_type<true> true_type;
+        typedef bool_type<false> false_type;
+
+        /// Type traits for floating point types.
+        template <typename>
+        struct is_float : false_type {};
+        template <typename T>
+        struct is_float<const T> : is_float<T> {};
+        template <typename T>
+        struct is_float<volatile T> : is_float<T> {};
+        template <typename T>
+        struct is_float<const volatile T> : is_float<T> {};
+        template <>
+        struct is_float<float> : true_type {};
+        template <>
+        struct is_float<double> : true_type {};
+        template <>
+        struct is_float<long double> : true_type {};
+#endif
+
+        /// Type traits for floating point bits.
+        template <typename T>
+        struct bits {
+          typedef unsigned char type;
+        };
+        template <typename T>
+        struct bits<const T> : bits<T> {};
+        template <typename T>
+        struct bits<volatile T> : bits<T> {};
+        template <typename T>
+        struct bits<const volatile T> : bits<T> {};
+
+#if HALF_ENABLE_CPP11_CSTDINT
+        /// Unsigned integer of (at least) 16 bits width.
+        typedef std::uint_least16_t uint16;
+
+        /// Unsigned integer of (at least) 32 bits width.
+        template <>
+        struct bits<float> {
+          typedef std::uint_least32_t type;
+        };
+
+        /// Unsigned integer of (at least) 64 bits width.
+        template <>
+        struct bits<double> {
+          typedef std::uint_least64_t type;
+        };
+#else
+        /// Unsigned integer of (at least) 16 bits width.
+        typedef unsigned short uint16;
+
+        /// Unsigned integer of (at least) 32 bits width.
+        template <>
+        struct bits<float>
+            : conditional<std::numeric_limits<unsigned int>::digits >= 32,
+                          unsigned int, unsigned long> {};
+
+#if HALF_ENABLE_CPP11_LONG_LONG
+        /// Unsigned integer of (at least) 64 bits width.
+        template <>
+        struct bits<double>
+            : conditional<std::numeric_limits<unsigned long>::digits >= 64,
+                          unsigned long, unsigned long long> {};
+#else
+        /// Unsigned integer of (at least) 64 bits width.
+        template <>
+        struct bits<double> {
+          typedef unsigned long type;
+        };
+#endif
+#endif
+
+        /// Tag type for binary construction.
+        struct binary_t {};
+
+        /// Tag for binary construction.
+        HALF_CONSTEXPR_CONST binary_t binary = binary_t();
+
+        /// Temporary half-precision expression.
+        /// This class represents a half-precision expression which just stores
+        /// a single-precision value internally.
+        struct expr {
+          /// Conversion constructor.
+          /// \param f single-precision value to convert
+          explicit HALF_CONSTEXPR expr(float f) HALF_NOEXCEPT : value_(f) {}
+
+          /// Conversion to single-precision.
+          /// \return single precision value representing expression value
+          HALF_CONSTEXPR operator float() const HALF_NOEXCEPT { return value_; }
+
+         private:
+          /// Internal expression value stored in single-precision.
+          float value_;
+        };
+
+        /// SFINAE helper for generic half-precision functions.
+        /// This class template has to be specialized for each valid
+        /// combination of argument types to provide a corresponding
+        /// `type` member equivalent to \a T.
+        /// \tparam T type to return
+        template <typename T, typename, typename = void, typename = void>
+        struct enable {};
+        template <typename T>
+        struct enable<T, half, void, void> {
+          typedef T type; };
+		template<typename T> struct enable<T,expr,void,void> { typedef T type; };
+		template<typename T> struct enable<T,half,half,void> { typedef T type; };
+		template<typename T> struct enable<T,half,expr,void> { typedef T type; };
+		template<typename T> struct enable<T,expr,half,void> { typedef T type; };
+		template<typename T> struct enable<T,expr,expr,void> { typedef T type; };
+		template<typename T> struct enable<T,half,half,half> { typedef T type; };
+		template<typename T> struct enable<T,half,half,expr> { typedef T type; };
+		template<typename T> struct enable<T,half,expr,half> { typedef T type; };
+		template<typename T> struct enable<T,half,expr,expr> { typedef T type; };
+		template<typename T> struct enable<T,expr,half,half> { typedef T type; };
+		template<typename T> struct enable<T,expr,half,expr> { typedef T type; };
+		template<typename T> struct enable<T,expr,expr,half> { typedef T type; };
+		template<typename T> struct enable<T,expr,expr,expr> { typedef T type; };
+
+                /// Return type for specialized generic 2-argument
+                /// half-precision functions. This class template has to be
+                /// specialized for each valid combination of argument types to
+                /// provide a corresponding `type` member denoting the
+                /// appropriate return type. \tparam T first argument type
+                /// \tparam U first argument type
+                template <typename T, typename U>
+                struct result : enable<expr, T, U> {};
+                template<> struct result<half,half> { typedef half type; };
+
+		/// \name Classification helpers
+		/// \{
+
+		/// Check for infinity.
+		/// \tparam T argument type (builtin floating point type)
+		/// \param arg value to query
+		/// \retval true if infinity
+		/// \retval false else
+		template<typename T> bool builtin_isinf(T arg)
+		{
+		#if HALF_ENABLE_CPP11_CMATH
+			return std::isinf(arg);
+		#elif defined(_MSC_VER)
+                  return !::_finite(static_cast<double>(arg)) &&
+                         !::_isnan(static_cast<double>(arg));
+#else
+                  return arg == std::numeric_limits<T>::infinity() ||
+                         arg == -std::numeric_limits<T>::infinity();
+#endif
+		}
+
+		/// Check for NaN.
+		/// \tparam T argument type (builtin floating point type)
+		/// \param arg value to query
+		/// \retval true if not a number
+		/// \retval false else
+		template<typename T> bool builtin_isnan(T arg)
+		{
+		#if HALF_ENABLE_CPP11_CMATH
+			return std::isnan(arg);
+		#elif defined(_MSC_VER)
+                  return ::_isnan(static_cast<double>(arg)) != 0;
+#else
+                  return arg != arg;
+#endif
+		}
+
+		/// Check sign.
+		/// \tparam T argument type (builtin floating point type)
+		/// \param arg value to query
+		/// \retval true if signbit set
+		/// \retval false else
+		template<typename T> bool builtin_signbit(T arg)
+		{
+		#if HALF_ENABLE_CPP11_CMATH
+			return std::signbit(arg);
+		#else
+                  return arg < T() || (arg == T() && T(1) / arg < T());
+#endif
+                }
+
+		/// \}
+		/// \name Conversion
+		/// \{
+
+                /// Convert IEEE single-precision to half-precision.
+                /// Credit for this goes to [Jeroen van der
+                /// Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
+                /// \tparam R rounding mode to use, `std::round_indeterminate`
+                /// for fastest rounding \param value single-precision value
+                /// \return binary representation of half-precision value
+                template <std::float_round_style R>
+                uint16 float2half_impl(float value, true_type) {
+                  typedef bits<float>::type uint32;
+                  uint32 bits;  // = *reinterpret_cast<uint32*>(&value);
+                                // //violating strict aliasing!
+                  std::memcpy(&bits, &value, sizeof(float));
+                  /*			uint16 hbits = (bits>>16) & 0x8000;
+                                          bits &= 0x7FFFFFFF;
+                                          int exp = bits >> 23;
+                                          if(exp == 255)
+                                                  return hbits | 0x7C00 |
+                     (0x3FF&-static_cast<unsigned>((bits&0x7FFFFF)!=0)); if(exp
+                     > 142)
+                                          {
+                                                  if(R ==
+                     std::round_toward_infinity) return hbits | 0x7C00 -
+                     (hbits>>15); if(R == std::round_toward_neg_infinity) return
+                     hbits | 0x7BFF + (hbits>>15); return hbits | 0x7BFF +
+                     (R!=std::round_toward_zero);
+                                          }
+                                          int g, s;
+                                          if(exp > 112)
+                                          {
+                                                  g = (bits>>12) & 1;
+                                                  s = (bits&0xFFF) != 0;
+                                                  hbits |= ((exp-112)<<10) |
+                     ((bits>>13)&0x3FF);
+                                          }
+                                          else if(exp > 101)
+                                          {
+                                                  int i = 125 - exp;
+                                                  bits = (bits&0x7FFFFF) |
+                     0x800000; g = (bits>>i) & 1; s = (bits&((1L<<i)-1)) != 0;
+                                                  hbits |= bits >> (i+1);
+                                          }
+                                          else
+                                          {
+                                                  g = 0;
+                                                  s = bits != 0;
+                                          }
+                                          if(R == std::round_to_nearest)
+                                                  #if HALF_ROUND_TIES_TO_EVEN
+                                                          hbits += g &
+                     (s|hbits); #else hbits += g; #endif else if(R ==
+                     std::round_toward_infinity) hbits += ~(hbits>>15) & (s|g);
+                                          else if(R ==
+                     std::round_toward_neg_infinity) hbits += (hbits>>15) &
+                     (g|s);
+                  */
+                  static const uint16 base_table[512] = {
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+                      0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002,
+                      0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100,
+                      0x0200, 0x0400, 0x0800, 0x0C00, 0x1000, 0x1400, 0x1800,
+                      0x1C00, 0x2000, 0x2400, 0x2800, 0x2C00, 0x3000, 0x3400,
+                      0x3800, 0x3C00, 0x4000, 0x4400, 0x4800, 0x4C00, 0x5000,
+                      0x5400, 0x5800, 0x5C00, 0x6000, 0x6400, 0x6800, 0x6C00,
+                      0x7000, 0x7400, 0x7800, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x7C00,
+                      0x7C00, 0x7C00, 0x7C00, 0x7C00, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
+                      0x8000, 0x8000, 0x8001, 0x8002, 0x8004, 0x8008, 0x8010,
+                      0x8020, 0x8040, 0x8080, 0x8100, 0x8200, 0x8400, 0x8800,
+                      0x8C00, 0x9000, 0x9400, 0x9800, 0x9C00, 0xA000, 0xA400,
+                      0xA800, 0xAC00, 0xB000, 0xB400, 0xB800, 0xBC00, 0xC000,
+                      0xC400, 0xC800, 0xCC00, 0xD000, 0xD400, 0xD800, 0xDC00,
+                      0xE000, 0xE400, 0xE800, 0xEC00, 0xF000, 0xF400, 0xF800,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00, 0xFC00,
+                      0xFC00};
+                  static const unsigned char shift_table[512] = {
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15,
+                      14, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+                      13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+                      13, 13, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 13, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 23, 22, 21, 20, 19,
+                      18, 17, 16, 15, 14, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+                      13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
+                      13, 13, 13, 13, 13, 13, 13, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
+                      24, 24, 24, 24, 24, 24, 24, 13};
+                  uint16 hbits = base_table[bits >> 23] +
+                                 static_cast<uint16>((bits & 0x7FFFFF) >>
+                                                     shift_table[bits >> 23]);
+                  if (R == std::round_to_nearest)
+                    hbits +=
+                        (((bits & 0x7FFFFF) >> (shift_table[bits >> 23] - 1)) |
+                         (((bits >> 23) & 0xFF) == 102)) &
+                        ((hbits & 0x7C00) != 0x7C00)
+#if HALF_ROUND_TIES_TO_EVEN
+                        & (((((static_cast<uint32>(1)
+                               << (shift_table[bits >> 23] - 1)) -
+                              1) &
+                             bits) != 0) |
+                           hbits)
+#endif
+                        ;
+                  else if (R == std::round_toward_zero)
+                    hbits -=
+                        ((hbits & 0x7FFF) == 0x7C00) & ~shift_table[bits >> 23];
+                  else if (R == std::round_toward_infinity)
+                    hbits += ((((bits & 0x7FFFFF &
+                                 ((static_cast<uint32>(1)
+                                   << (shift_table[bits >> 23])) -
+                                  1)) != 0) |
+                               (((bits >> 23) <= 102) & ((bits >> 23) != 0))) &
+                              (hbits < 0x7C00)) -
+                             ((hbits == 0xFC00) & ((bits >> 23) != 511));
+                  else if (R == std::round_toward_neg_infinity)
+                    hbits +=
+                        ((((bits & 0x7FFFFF &
+                            ((static_cast<uint32>(1)
+                              << (shift_table[bits >> 23])) -
+                             1)) != 0) |
+                          (((bits >> 23) <= 358) & ((bits >> 23) != 256))) &
+                         (hbits < 0xFC00) & (hbits >> 15)) -
+                        ((hbits == 0x7C00) & ((bits >> 23) != 255));
+                  return hbits;
+                }
+
+                /// Convert IEEE double-precision to half-precision.
+                /// \tparam R rounding mode to use, `std::round_indeterminate`
+                /// for fastest rounding \param value double-precision value
+                /// \return binary representation of half-precision value
+                template <std::float_round_style R>
+                uint16 float2half_impl(double value, true_type) {
+                  typedef bits<float>::type uint32;
+                  typedef bits<double>::type uint64;
+                  uint64 bits;  // = *reinterpret_cast<uint64*>(&value);
+                                // //violating strict aliasing!
+                  std::memcpy(&bits, &value, sizeof(double));
+                  uint32 hi = bits >> 32, lo = bits & 0xFFFFFFFF;
+                  uint16 hbits = (hi >> 16) & 0x8000;
+                  hi &= 0x7FFFFFFF;
+                  int exp = hi >> 20;
+                  if (exp == 2047)
+                    return hbits | 0x7C00 |
+                           (0x3FF & -static_cast<unsigned>(
+                                        (bits & 0xFFFFFFFFFFFFF) != 0));
+                  if (exp > 1038) {
+                    if (R == std::round_toward_infinity)
+                      return hbits | 0x7C00 - (hbits >> 15);
+                    if (R == std::round_toward_neg_infinity)
+                      return hbits | 0x7BFF + (hbits >> 15);
+                    return hbits | 0x7BFF + (R != std::round_toward_zero);
+                  }
+                  int g, s = lo != 0;
+                  if (exp > 1008) {
+                    g = (hi >> 9) & 1;
+                    s |= (hi & 0x1FF) != 0;
+                    hbits |= ((exp - 1008) << 10) | ((hi >> 10) & 0x3FF);
+                  } else if (exp > 997) {
+                    int i = 1018 - exp;
+                    hi = (hi & 0xFFFFF) | 0x100000;
+                    g = (hi >> i) & 1;
+                    s |= (hi & ((1L << i) - 1)) != 0;
+                    hbits |= hi >> (i + 1);
+                  } else {
+                    g = 0;
+                    s |= hi != 0;
+                  }
+                  if (R == std::round_to_nearest)
+#if HALF_ROUND_TIES_TO_EVEN
+                    hbits += g & (s | hbits);
+#else
+                    hbits += g;
+#endif
+                  else if (R == std::round_toward_infinity)
+                    hbits += ~(hbits >> 15) & (s | g);
+                  else if (R == std::round_toward_neg_infinity)
+                    hbits += (hbits >> 15) & (g | s);
+                  return hbits;
+                }
+
+                /// Convert non-IEEE floating point to half-precision.
+                /// \tparam R rounding mode to use, `std::round_indeterminate`
+                /// for fastest rounding \tparam T source type (builtin floating
+                /// point type) \param value floating point value \return binary
+                /// representation of half-precision value
+                template <std::float_round_style R, typename T>
+                uint16 float2half_impl(T value, ...) {
+                  uint16 hbits = static_cast<unsigned>(builtin_signbit(value))
+                                 << 15;
+                  if (value == T()) return hbits;
+                  if (builtin_isnan(value)) return hbits | 0x7FFF;
+                  if (builtin_isinf(value)) return hbits | 0x7C00;
+                  int exp;
+                  std::frexp(value, &exp);
+                  if (exp > 16) {
+                    if (R == std::round_toward_infinity)
+                      return hbits | 0x7C00 - (hbits >> 15);
+                    else if (R == std::round_toward_neg_infinity)
+                      return hbits | 0x7BFF + (hbits >> 15);
+                    return hbits | 0x7BFF + (R != std::round_toward_zero);
+                  }
+                  if (exp < -13)
+                    value = std::ldexp(value, 24);
+                  else {
+                    value = std::ldexp(value, 11 - exp);
+                    hbits |= ((exp + 13) << 10);
+                  }
+                  T ival, frac = std::modf(value, &ival);
+                  hbits +=
+                      static_cast<uint16>(std::abs(static_cast<int>(ival)));
+                  if (R == std::round_to_nearest) {
+                    frac = std::abs(frac);
+#if HALF_ROUND_TIES_TO_EVEN
+                    hbits += (frac > T(0.5)) | ((frac == T(0.5)) & hbits);
+#else
+                    hbits += frac >= T(0.5);
+#endif
+                  } else if (R == std::round_toward_infinity)
+                    hbits += frac > T();
+                  else if (R == std::round_toward_neg_infinity)
+                    hbits += frac < T();
+                  return hbits;
+                }
+
+                /// Convert floating point to half-precision.
+                /// \tparam R rounding mode to use, `std::round_indeterminate`
+                /// for fastest rounding \tparam T source type (builtin floating
+                /// point type) \param value floating point value \return binary
+                /// representation of half-precision value
+                template <std::float_round_style R, typename T>
+                uint16 float2half(T value) {
+                  return float2half_impl<R>(
+                      value,
+                      bool_type < std::numeric_limits<T>::is_iec559 &&
+                          sizeof(typename bits<T>::type) == sizeof(T) > ());
+                }
+
+                /// Convert integer to half-precision floating point.
+                /// \tparam R rounding mode to use, `std::round_indeterminate`
+                /// for fastest rounding \tparam S `true` if value negative,
+                /// `false` else \tparam T type to convert (builtin integer
+                /// type) \param value non-negative integral value \return
+                /// binary representation of half-precision value
+                template <std::float_round_style R, bool S, typename T>
+                uint16 int2half_impl(T value) {
+#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
+                  static_assert(std::is_integral<T>::value,
+                                "int to half conversion only supports builtin "
+                                "integer types");
+#endif
+                  if (S) value = -value;
+                  uint16 bits = S << 15;
+                  if (value > 0xFFFF) {
+                    if (R == std::round_toward_infinity)
+                      bits |= 0x7C00 - S;
+                    else if (R == std::round_toward_neg_infinity)
+                      bits |= 0x7BFF + S;
+                    else
+                      bits |= 0x7BFF + (R != std::round_toward_zero);
+                  } else if (value) {
+                    unsigned int m = value, exp = 24;
+                    for (; m < 0x400; m <<= 1, --exp)
+                      ;
+                    for (; m > 0x7FF; m >>= 1, ++exp)
+                      ;
+                    bits |= (exp << 10) + m;
+                    if (exp > 24) {
+                      if (R == std::round_to_nearest)
+                        bits +=
+                            (value >> (exp - 25)) & 1
+#if HALF_ROUND_TIES_TO_EVEN
+                            & (((((1 << (exp - 25)) - 1) & value) != 0) | bits)
+#endif
+                            ;
+                      else if (R == std::round_toward_infinity)
+                        bits += ((value & ((1 << (exp - 24)) - 1)) != 0) & !S;
+                      else if (R == std::round_toward_neg_infinity)
+                        bits += ((value & ((1 << (exp - 24)) - 1)) != 0) & S;
+                    }
+                  }
+                  return bits;
+                }
+
+                /// Convert integer to half-precision floating point.
+                /// \tparam R rounding mode to use, `std::round_indeterminate`
+                /// for fastest rounding \tparam T type to convert (builtin
+                /// integer type) \param value integral value \return binary
+                /// representation of half-precision value
+                template<std::float_round_style R,typename T> uint16 int2half(T value)
+		{
+                  return (value < 0) ? int2half_impl<R, true>(value)
+                                     : int2half_impl<R, false>(value);
+                }
+
+                /// Convert half-precision to IEEE single-precision.
+                /// Credit for this goes to [Jeroen van der
+                /// Zijp](ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf).
+                /// \param value binary representation of half-precision value
+                /// \return single-precision value
+                inline float half2float_impl(uint16 value, float, true_type) {
+                  typedef bits<float>::type uint32;
+                  /*			uint32 bits =
+                     static_cast<uint32>(value&0x8000)
+                     << 16; int abs = value & 0x7FFF; if(abs)
+                                          {
+                                                  bits |= 0x38000000 <<
+                     static_cast<unsigned>(abs>=0x7C00); for(; abs<0x400;
+                     abs<<=1,bits-=0x800000) ; bits += static_cast<uint32>(abs)
+                     << 13;
+                                          }
+                  */
+                  static const uint32 mantissa_table[2048] = {
+                      0x00000000, 0x33800000, 0x34000000, 0x34400000,
+                      0x34800000, 0x34A00000, 0x34C00000, 0x34E00000,
+                      0x35000000, 0x35100000, 0x35200000, 0x35300000,
+                      0x35400000, 0x35500000, 0x35600000, 0x35700000,
+                      0x35800000, 0x35880000, 0x35900000, 0x35980000,
+                      0x35A00000, 0x35A80000, 0x35B00000, 0x35B80000,
+                      0x35C00000, 0x35C80000, 0x35D00000, 0x35D80000,
+                      0x35E00000, 0x35E80000, 0x35F00000, 0x35F80000,
+                      0x36000000, 0x36040000, 0x36080000, 0x360C0000,
+                      0x36100000, 0x36140000, 0x36180000, 0x361C0000,
+                      0x36200000, 0x36240000, 0x36280000, 0x362C0000,
+                      0x36300000, 0x36340000, 0x36380000, 0x363C0000,
+                      0x36400000, 0x36440000, 0x36480000, 0x364C0000,
+                      0x36500000, 0x36540000, 0x36580000, 0x365C0000,
+                      0x36600000, 0x36640000, 0x36680000, 0x366C0000,
+                      0x36700000, 0x36740000, 0x36780000, 0x367C0000,
+                      0x36800000, 0x36820000, 0x36840000, 0x36860000,
+                      0x36880000, 0x368A0000, 0x368C0000, 0x368E0000,
+                      0x36900000, 0x36920000, 0x36940000, 0x36960000,
+                      0x36980000, 0x369A0000, 0x369C0000, 0x369E0000,
+                      0x36A00000, 0x36A20000, 0x36A40000, 0x36A60000,
+                      0x36A80000, 0x36AA0000, 0x36AC0000, 0x36AE0000,
+                      0x36B00000, 0x36B20000, 0x36B40000, 0x36B60000,
+                      0x36B80000, 0x36BA0000, 0x36BC0000, 0x36BE0000,
+                      0x36C00000, 0x36C20000, 0x36C40000, 0x36C60000,
+                      0x36C80000, 0x36CA0000, 0x36CC0000, 0x36CE0000,
+                      0x36D00000, 0x36D20000, 0x36D40000, 0x36D60000,
+                      0x36D80000, 0x36DA0000, 0x36DC0000, 0x36DE0000,
+                      0x36E00000, 0x36E20000, 0x36E40000, 0x36E60000,
+                      0x36E80000, 0x36EA0000, 0x36EC0000, 0x36EE0000,
+                      0x36F00000, 0x36F20000, 0x36F40000, 0x36F60000,
+                      0x36F80000, 0x36FA0000, 0x36FC0000, 0x36FE0000,
+                      0x37000000, 0x37010000, 0x37020000, 0x37030000,
+                      0x37040000, 0x37050000, 0x37060000, 0x37070000,
+                      0x37080000, 0x37090000, 0x370A0000, 0x370B0000,
+                      0x370C0000, 0x370D0000, 0x370E0000, 0x370F0000,
+                      0x37100000, 0x37110000, 0x37120000, 0x37130000,
+                      0x37140000, 0x37150000, 0x37160000, 0x37170000,
+                      0x37180000, 0x37190000, 0x371A0000, 0x371B0000,
+                      0x371C0000, 0x371D0000, 0x371E0000, 0x371F0000,
+                      0x37200000, 0x37210000, 0x37220000, 0x37230000,
+                      0x37240000, 0x37250000, 0x37260000, 0x37270000,
+                      0x37280000, 0x37290000, 0x372A0000, 0x372B0000,
+                      0x372C0000, 0x372D0000, 0x372E0000, 0x372F0000,
+                      0x37300000, 0x37310000, 0x37320000, 0x37330000,
+                      0x37340000, 0x37350000, 0x37360000, 0x37370000,
+                      0x37380000, 0x37390000, 0x373A0000, 0x373B0000,
+                      0x373C0000, 0x373D0000, 0x373E0000, 0x373F0000,
+                      0x37400000, 0x37410000, 0x37420000, 0x37430000,
+                      0x37440000, 0x37450000, 0x37460000, 0x37470000,
+                      0x37480000, 0x37490000, 0x374A0000, 0x374B0000,
+                      0x374C0000, 0x374D0000, 0x374E0000, 0x374F0000,
+                      0x37500000, 0x37510000, 0x37520000, 0x37530000,
+                      0x37540000, 0x37550000, 0x37560000, 0x37570000,
+                      0x37580000, 0x37590000, 0x375A0000, 0x375B0000,
+                      0x375C0000, 0x375D0000, 0x375E0000, 0x375F0000,
+                      0x37600000, 0x37610000, 0x37620000, 0x37630000,
+                      0x37640000, 0x37650000, 0x37660000, 0x37670000,
+                      0x37680000, 0x37690000, 0x376A0000, 0x376B0000,
+                      0x376C0000, 0x376D0000, 0x376E0000, 0x376F0000,
+                      0x37700000, 0x37710000, 0x37720000, 0x37730000,
+                      0x37740000, 0x37750000, 0x37760000, 0x37770000,
+                      0x37780000, 0x37790000, 0x377A0000, 0x377B0000,
+                      0x377C0000, 0x377D0000, 0x377E0000, 0x377F0000,
+                      0x37800000, 0x37808000, 0x37810000, 0x37818000,
+                      0x37820000, 0x37828000, 0x37830000, 0x37838000,
+                      0x37840000, 0x37848000, 0x37850000, 0x37858000,
+                      0x37860000, 0x37868000, 0x37870000, 0x37878000,
+                      0x37880000, 0x37888000, 0x37890000, 0x37898000,
+                      0x378A0000, 0x378A8000, 0x378B0000, 0x378B8000,
+                      0x378C0000, 0x378C8000, 0x378D0000, 0x378D8000,
+                      0x378E0000, 0x378E8000, 0x378F0000, 0x378F8000,
+                      0x37900000, 0x37908000, 0x37910000, 0x37918000,
+                      0x37920000, 0x37928000, 0x37930000, 0x37938000,
+                      0x37940000, 0x37948000, 0x37950000, 0x37958000,
+                      0x37960000, 0x37968000, 0x37970000, 0x37978000,
+                      0x37980000, 0x37988000, 0x37990000, 0x37998000,
+                      0x379A0000, 0x379A8000, 0x379B0000, 0x379B8000,
+                      0x379C0000, 0x379C8000, 0x379D0000, 0x379D8000,
+                      0x379E0000, 0x379E8000, 0x379F0000, 0x379F8000,
+                      0x37A00000, 0x37A08000, 0x37A10000, 0x37A18000,
+                      0x37A20000, 0x37A28000, 0x37A30000, 0x37A38000,
+                      0x37A40000, 0x37A48000, 0x37A50000, 0x37A58000,
+                      0x37A60000, 0x37A68000, 0x37A70000, 0x37A78000,
+                      0x37A80000, 0x37A88000, 0x37A90000, 0x37A98000,
+                      0x37AA0000, 0x37AA8000, 0x37AB0000, 0x37AB8000,
+                      0x37AC0000, 0x37AC8000, 0x37AD0000, 0x37AD8000,
+                      0x37AE0000, 0x37AE8000, 0x37AF0000, 0x37AF8000,
+                      0x37B00000, 0x37B08000, 0x37B10000, 0x37B18000,
+                      0x37B20000, 0x37B28000, 0x37B30000, 0x37B38000,
+                      0x37B40000, 0x37B48000, 0x37B50000, 0x37B58000,
+                      0x37B60000, 0x37B68000, 0x37B70000, 0x37B78000,
+                      0x37B80000, 0x37B88000, 0x37B90000, 0x37B98000,
+                      0x37BA0000, 0x37BA8000, 0x37BB0000, 0x37BB8000,
+                      0x37BC0000, 0x37BC8000, 0x37BD0000, 0x37BD8000,
+                      0x37BE0000, 0x37BE8000, 0x37BF0000, 0x37BF8000,
+                      0x37C00000, 0x37C08000, 0x37C10000, 0x37C18000,
+                      0x37C20000, 0x37C28000, 0x37C30000, 0x37C38000,
+                      0x37C40000, 0x37C48000, 0x37C50000, 0x37C58000,
+                      0x37C60000, 0x37C68000, 0x37C70000, 0x37C78000,
+                      0x37C80000, 0x37C88000, 0x37C90000, 0x37C98000,
+                      0x37CA0000, 0x37CA8000, 0x37CB0000, 0x37CB8000,
+                      0x37CC0000, 0x37CC8000, 0x37CD0000, 0x37CD8000,
+                      0x37CE0000, 0x37CE8000, 0x37CF0000, 0x37CF8000,
+                      0x37D00000, 0x37D08000, 0x37D10000, 0x37D18000,
+                      0x37D20000, 0x37D28000, 0x37D30000, 0x37D38000,
+                      0x37D40000, 0x37D48000, 0x37D50000, 0x37D58000,
+                      0x37D60000, 0x37D68000, 0x37D70000, 0x37D78000,
+                      0x37D80000, 0x37D88000, 0x37D90000, 0x37D98000,
+                      0x37DA0000, 0x37DA8000, 0x37DB0000, 0x37DB8000,
+                      0x37DC0000, 0x37DC8000, 0x37DD0000, 0x37DD8000,
+                      0x37DE0000, 0x37DE8000, 0x37DF0000, 0x37DF8000,
+                      0x37E00000, 0x37E08000, 0x37E10000, 0x37E18000,
+                      0x37E20000, 0x37E28000, 0x37E30000, 0x37E38000,
+                      0x37E40000, 0x37E48000, 0x37E50000, 0x37E58000,
+                      0x37E60000, 0x37E68000, 0x37E70000, 0x37E78000,
+                      0x37E80000, 0x37E88000, 0x37E90000, 0x37E98000,
+                      0x37EA0000, 0x37EA8000, 0x37EB0000, 0x37EB8000,
+                      0x37EC0000, 0x37EC8000, 0x37ED0000, 0x37ED8000,
+                      0x37EE0000, 0x37EE8000, 0x37EF0000, 0x37EF8000,
+                      0x37F00000, 0x37F08000, 0x37F10000, 0x37F18000,
+                      0x37F20000, 0x37F28000, 0x37F30000, 0x37F38000,
+                      0x37F40000, 0x37F48000, 0x37F50000, 0x37F58000,
+                      0x37F60000, 0x37F68000, 0x37F70000, 0x37F78000,
+                      0x37F80000, 0x37F88000, 0x37F90000, 0x37F98000,
+                      0x37FA0000, 0x37FA8000, 0x37FB0000, 0x37FB8000,
+                      0x37FC0000, 0x37FC8000, 0x37FD0000, 0x37FD8000,
+                      0x37FE0000, 0x37FE8000, 0x37FF0000, 0x37FF8000,
+                      0x38000000, 0x38004000, 0x38008000, 0x3800C000,
+                      0x38010000, 0x38014000, 0x38018000, 0x3801C000,
+                      0x38020000, 0x38024000, 0x38028000, 0x3802C000,
+                      0x38030000, 0x38034000, 0x38038000, 0x3803C000,
+                      0x38040000, 0x38044000, 0x38048000, 0x3804C000,
+                      0x38050000, 0x38054000, 0x38058000, 0x3805C000,
+                      0x38060000, 0x38064000, 0x38068000, 0x3806C000,
+                      0x38070000, 0x38074000, 0x38078000, 0x3807C000,
+                      0x38080000, 0x38084000, 0x38088000, 0x3808C000,
+                      0x38090000, 0x38094000, 0x38098000, 0x3809C000,
+                      0x380A0000, 0x380A4000, 0x380A8000, 0x380AC000,
+                      0x380B0000, 0x380B4000, 0x380B8000, 0x380BC000,
+                      0x380C0000, 0x380C4000, 0x380C8000, 0x380CC000,
+                      0x380D0000, 0x380D4000, 0x380D8000, 0x380DC000,
+                      0x380E0000, 0x380E4000, 0x380E8000, 0x380EC000,
+                      0x380F0000, 0x380F4000, 0x380F8000, 0x380FC000,
+                      0x38100000, 0x38104000, 0x38108000, 0x3810C000,
+                      0x38110000, 0x38114000, 0x38118000, 0x3811C000,
+                      0x38120000, 0x38124000, 0x38128000, 0x3812C000,
+                      0x38130000, 0x38134000, 0x38138000, 0x3813C000,
+                      0x38140000, 0x38144000, 0x38148000, 0x3814C000,
+                      0x38150000, 0x38154000, 0x38158000, 0x3815C000,
+                      0x38160000, 0x38164000, 0x38168000, 0x3816C000,
+                      0x38170000, 0x38174000, 0x38178000, 0x3817C000,
+                      0x38180000, 0x38184000, 0x38188000, 0x3818C000,
+                      0x38190000, 0x38194000, 0x38198000, 0x3819C000,
+                      0x381A0000, 0x381A4000, 0x381A8000, 0x381AC000,
+                      0x381B0000, 0x381B4000, 0x381B8000, 0x381BC000,
+                      0x381C0000, 0x381C4000, 0x381C8000, 0x381CC000,
+                      0x381D0000, 0x381D4000, 0x381D8000, 0x381DC000,
+                      0x381E0000, 0x381E4000, 0x381E8000, 0x381EC000,
+                      0x381F0000, 0x381F4000, 0x381F8000, 0x381FC000,
+                      0x38200000, 0x38204000, 0x38208000, 0x3820C000,
+                      0x38210000, 0x38214000, 0x38218000, 0x3821C000,
+                      0x38220000, 0x38224000, 0x38228000, 0x3822C000,
+                      0x38230000, 0x38234000, 0x38238000, 0x3823C000,
+                      0x38240000, 0x38244000, 0x38248000, 0x3824C000,
+                      0x38250000, 0x38254000, 0x38258000, 0x3825C000,
+                      0x38260000, 0x38264000, 0x38268000, 0x3826C000,
+                      0x38270000, 0x38274000, 0x38278000, 0x3827C000,
+                      0x38280000, 0x38284000, 0x38288000, 0x3828C000,
+                      0x38290000, 0x38294000, 0x38298000, 0x3829C000,
+                      0x382A0000, 0x382A4000, 0x382A8000, 0x382AC000,
+                      0x382B0000, 0x382B4000, 0x382B8000, 0x382BC000,
+                      0x382C0000, 0x382C4000, 0x382C8000, 0x382CC000,
+                      0x382D0000, 0x382D4000, 0x382D8000, 0x382DC000,
+                      0x382E0000, 0x382E4000, 0x382E8000, 0x382EC000,
+                      0x382F0000, 0x382F4000, 0x382F8000, 0x382FC000,
+                      0x38300000, 0x38304000, 0x38308000, 0x3830C000,
+                      0x38310000, 0x38314000, 0x38318000, 0x3831C000,
+                      0x38320000, 0x38324000, 0x38328000, 0x3832C000,
+                      0x38330000, 0x38334000, 0x38338000, 0x3833C000,
+                      0x38340000, 0x38344000, 0x38348000, 0x3834C000,
+                      0x38350000, 0x38354000, 0x38358000, 0x3835C000,
+                      0x38360000, 0x38364000, 0x38368000, 0x3836C000,
+                      0x38370000, 0x38374000, 0x38378000, 0x3837C000,
+                      0x38380000, 0x38384000, 0x38388000, 0x3838C000,
+                      0x38390000, 0x38394000, 0x38398000, 0x3839C000,
+                      0x383A0000, 0x383A4000, 0x383A8000, 0x383AC000,
+                      0x383B0000, 0x383B4000, 0x383B8000, 0x383BC000,
+                      0x383C0000, 0x383C4000, 0x383C8000, 0x383CC000,
+                      0x383D0000, 0x383D4000, 0x383D8000, 0x383DC000,
+                      0x383E0000, 0x383E4000, 0x383E8000, 0x383EC000,
+                      0x383F0000, 0x383F4000, 0x383F8000, 0x383FC000,
+                      0x38400000, 0x38404000, 0x38408000, 0x3840C000,
+                      0x38410000, 0x38414000, 0x38418000, 0x3841C000,
+                      0x38420000, 0x38424000, 0x38428000, 0x3842C000,
+                      0x38430000, 0x38434000, 0x38438000, 0x3843C000,
+                      0x38440000, 0x38444000, 0x38448000, 0x3844C000,
+                      0x38450000, 0x38454000, 0x38458000, 0x3845C000,
+                      0x38460000, 0x38464000, 0x38468000, 0x3846C000,
+                      0x38470000, 0x38474000, 0x38478000, 0x3847C000,
+                      0x38480000, 0x38484000, 0x38488000, 0x3848C000,
+                      0x38490000, 0x38494000, 0x38498000, 0x3849C000,
+                      0x384A0000, 0x384A4000, 0x384A8000, 0x384AC000,
+                      0x384B0000, 0x384B4000, 0x384B8000, 0x384BC000,
+                      0x384C0000, 0x384C4000, 0x384C8000, 0x384CC000,
+                      0x384D0000, 0x384D4000, 0x384D8000, 0x384DC000,
+                      0x384E0000, 0x384E4000, 0x384E8000, 0x384EC000,
+                      0x384F0000, 0x384F4000, 0x384F8000, 0x384FC000,
+                      0x38500000, 0x38504000, 0x38508000, 0x3850C000,
+                      0x38510000, 0x38514000, 0x38518000, 0x3851C000,
+                      0x38520000, 0x38524000, 0x38528000, 0x3852C000,
+                      0x38530000, 0x38534000, 0x38538000, 0x3853C000,
+                      0x38540000, 0x38544000, 0x38548000, 0x3854C000,
+                      0x38550000, 0x38554000, 0x38558000, 0x3855C000,
+                      0x38560000, 0x38564000, 0x38568000, 0x3856C000,
+                      0x38570000, 0x38574000, 0x38578000, 0x3857C000,
+                      0x38580000, 0x38584000, 0x38588000, 0x3858C000,
+                      0x38590000, 0x38594000, 0x38598000, 0x3859C000,
+                      0x385A0000, 0x385A4000, 0x385A8000, 0x385AC000,
+                      0x385B0000, 0x385B4000, 0x385B8000, 0x385BC000,
+                      0x385C0000, 0x385C4000, 0x385C8000, 0x385CC000,
+                      0x385D0000, 0x385D4000, 0x385D8000, 0x385DC000,
+                      0x385E0000, 0x385E4000, 0x385E8000, 0x385EC000,
+                      0x385F0000, 0x385F4000, 0x385F8000, 0x385FC000,
+                      0x38600000, 0x38604000, 0x38608000, 0x3860C000,
+                      0x38610000, 0x38614000, 0x38618000, 0x3861C000,
+                      0x38620000, 0x38624000, 0x38628000, 0x3862C000,
+                      0x38630000, 0x38634000, 0x38638000, 0x3863C000,
+                      0x38640000, 0x38644000, 0x38648000, 0x3864C000,
+                      0x38650000, 0x38654000, 0x38658000, 0x3865C000,
+                      0x38660000, 0x38664000, 0x38668000, 0x3866C000,
+                      0x38670000, 0x38674000, 0x38678000, 0x3867C000,
+                      0x38680000, 0x38684000, 0x38688000, 0x3868C000,
+                      0x38690000, 0x38694000, 0x38698000, 0x3869C000,
+                      0x386A0000, 0x386A4000, 0x386A8000, 0x386AC000,
+                      0x386B0000, 0x386B4000, 0x386B8000, 0x386BC000,
+                      0x386C0000, 0x386C4000, 0x386C8000, 0x386CC000,
+                      0x386D0000, 0x386D4000, 0x386D8000, 0x386DC000,
+                      0x386E0000, 0x386E4000, 0x386E8000, 0x386EC000,
+                      0x386F0000, 0x386F4000, 0x386F8000, 0x386FC000,
+                      0x38700000, 0x38704000, 0x38708000, 0x3870C000,
+                      0x38710000, 0x38714000, 0x38718000, 0x3871C000,
+                      0x38720000, 0x38724000, 0x38728000, 0x3872C000,
+                      0x38730000, 0x38734000, 0x38738000, 0x3873C000,
+                      0x38740000, 0x38744000, 0x38748000, 0x3874C000,
+                      0x38750000, 0x38754000, 0x38758000, 0x3875C000,
+                      0x38760000, 0x38764000, 0x38768000, 0x3876C000,
+                      0x38770000, 0x38774000, 0x38778000, 0x3877C000,
+                      0x38780000, 0x38784000, 0x38788000, 0x3878C000,
+                      0x38790000, 0x38794000, 0x38798000, 0x3879C000,
+                      0x387A0000, 0x387A4000, 0x387A8000, 0x387AC000,
+                      0x387B0000, 0x387B4000, 0x387B8000, 0x387BC000,
+                      0x387C0000, 0x387C4000, 0x387C8000, 0x387CC000,
+                      0x387D0000, 0x387D4000, 0x387D8000, 0x387DC000,
+                      0x387E0000, 0x387E4000, 0x387E8000, 0x387EC000,
+                      0x387F0000, 0x387F4000, 0x387F8000, 0x387FC000,
+                      0x38000000, 0x38002000, 0x38004000, 0x38006000,
+                      0x38008000, 0x3800A000, 0x3800C000, 0x3800E000,
+                      0x38010000, 0x38012000, 0x38014000, 0x38016000,
+                      0x38018000, 0x3801A000, 0x3801C000, 0x3801E000,
+                      0x38020000, 0x38022000, 0x38024000, 0x38026000,
+                      0x38028000, 0x3802A000, 0x3802C000, 0x3802E000,
+                      0x38030000, 0x38032000, 0x38034000, 0x38036000,
+                      0x38038000, 0x3803A000, 0x3803C000, 0x3803E000,
+                      0x38040000, 0x38042000, 0x38044000, 0x38046000,
+                      0x38048000, 0x3804A000, 0x3804C000, 0x3804E000,
+                      0x38050000, 0x38052000, 0x38054000, 0x38056000,
+                      0x38058000, 0x3805A000, 0x3805C000, 0x3805E000,
+                      0x38060000, 0x38062000, 0x38064000, 0x38066000,
+                      0x38068000, 0x3806A000, 0x3806C000, 0x3806E000,
+                      0x38070000, 0x38072000, 0x38074000, 0x38076000,
+                      0x38078000, 0x3807A000, 0x3807C000, 0x3807E000,
+                      0x38080000, 0x38082000, 0x38084000, 0x38086000,
+                      0x38088000, 0x3808A000, 0x3808C000, 0x3808E000,
+                      0x38090000, 0x38092000, 0x38094000, 0x38096000,
+                      0x38098000, 0x3809A000, 0x3809C000, 0x3809E000,
+                      0x380A0000, 0x380A2000, 0x380A4000, 0x380A6000,
+                      0x380A8000, 0x380AA000, 0x380AC000, 0x380AE000,
+                      0x380B0000, 0x380B2000, 0x380B4000, 0x380B6000,
+                      0x380B8000, 0x380BA000, 0x380BC000, 0x380BE000,
+                      0x380C0000, 0x380C2000, 0x380C4000, 0x380C6000,
+                      0x380C8000, 0x380CA000, 0x380CC000, 0x380CE000,
+                      0x380D0000, 0x380D2000, 0x380D4000, 0x380D6000,
+                      0x380D8000, 0x380DA000, 0x380DC000, 0x380DE000,
+                      0x380E0000, 0x380E2000, 0x380E4000, 0x380E6000,
+                      0x380E8000, 0x380EA000, 0x380EC000, 0x380EE000,
+                      0x380F0000, 0x380F2000, 0x380F4000, 0x380F6000,
+                      0x380F8000, 0x380FA000, 0x380FC000, 0x380FE000,
+                      0x38100000, 0x38102000, 0x38104000, 0x38106000,
+                      0x38108000, 0x3810A000, 0x3810C000, 0x3810E000,
+                      0x38110000, 0x38112000, 0x38114000, 0x38116000,
+                      0x38118000, 0x3811A000, 0x3811C000, 0x3811E000,
+                      0x38120000, 0x38122000, 0x38124000, 0x38126000,
+                      0x38128000, 0x3812A000, 0x3812C000, 0x3812E000,
+                      0x38130000, 0x38132000, 0x38134000, 0x38136000,
+                      0x38138000, 0x3813A000, 0x3813C000, 0x3813E000,
+                      0x38140000, 0x38142000, 0x38144000, 0x38146000,
+                      0x38148000, 0x3814A000, 0x3814C000, 0x3814E000,
+                      0x38150000, 0x38152000, 0x38154000, 0x38156000,
+                      0x38158000, 0x3815A000, 0x3815C000, 0x3815E000,
+                      0x38160000, 0x38162000, 0x38164000, 0x38166000,
+                      0x38168000, 0x3816A000, 0x3816C000, 0x3816E000,
+                      0x38170000, 0x38172000, 0x38174000, 0x38176000,
+                      0x38178000, 0x3817A000, 0x3817C000, 0x3817E000,
+                      0x38180000, 0x38182000, 0x38184000, 0x38186000,
+                      0x38188000, 0x3818A000, 0x3818C000, 0x3818E000,
+                      0x38190000, 0x38192000, 0x38194000, 0x38196000,
+                      0x38198000, 0x3819A000, 0x3819C000, 0x3819E000,
+                      0x381A0000, 0x381A2000, 0x381A4000, 0x381A6000,
+                      0x381A8000, 0x381AA000, 0x381AC000, 0x381AE000,
+                      0x381B0000, 0x381B2000, 0x381B4000, 0x381B6000,
+                      0x381B8000, 0x381BA000, 0x381BC000, 0x381BE000,
+                      0x381C0000, 0x381C2000, 0x381C4000, 0x381C6000,
+                      0x381C8000, 0x381CA000, 0x381CC000, 0x381CE000,
+                      0x381D0000, 0x381D2000, 0x381D4000, 0x381D6000,
+                      0x381D8000, 0x381DA000, 0x381DC000, 0x381DE000,
+                      0x381E0000, 0x381E2000, 0x381E4000, 0x381E6000,
+                      0x381E8000, 0x381EA000, 0x381EC000, 0x381EE000,
+                      0x381F0000, 0x381F2000, 0x381F4000, 0x381F6000,
+                      0x381F8000, 0x381FA000, 0x381FC000, 0x381FE000,
+                      0x38200000, 0x38202000, 0x38204000, 0x38206000,
+                      0x38208000, 0x3820A000, 0x3820C000, 0x3820E000,
+                      0x38210000, 0x38212000, 0x38214000, 0x38216000,
+                      0x38218000, 0x3821A000, 0x3821C000, 0x3821E000,
+                      0x38220000, 0x38222000, 0x38224000, 0x38226000,
+                      0x38228000, 0x3822A000, 0x3822C000, 0x3822E000,
+                      0x38230000, 0x38232000, 0x38234000, 0x38236000,
+                      0x38238000, 0x3823A000, 0x3823C000, 0x3823E000,
+                      0x38240000, 0x38242000, 0x38244000, 0x38246000,
+                      0x38248000, 0x3824A000, 0x3824C000, 0x3824E000,
+                      0x38250000, 0x38252000, 0x38254000, 0x38256000,
+                      0x38258000, 0x3825A000, 0x3825C000, 0x3825E000,
+                      0x38260000, 0x38262000, 0x38264000, 0x38266000,
+                      0x38268000, 0x3826A000, 0x3826C000, 0x3826E000,
+                      0x38270000, 0x38272000, 0x38274000, 0x38276000,
+                      0x38278000, 0x3827A000, 0x3827C000, 0x3827E000,
+                      0x38280000, 0x38282000, 0x38284000, 0x38286000,
+                      0x38288000, 0x3828A000, 0x3828C000, 0x3828E000,
+                      0x38290000, 0x38292000, 0x38294000, 0x38296000,
+                      0x38298000, 0x3829A000, 0x3829C000, 0x3829E000,
+                      0x382A0000, 0x382A2000, 0x382A4000, 0x382A6000,
+                      0x382A8000, 0x382AA000, 0x382AC000, 0x382AE000,
+                      0x382B0000, 0x382B2000, 0x382B4000, 0x382B6000,
+                      0x382B8000, 0x382BA000, 0x382BC000, 0x382BE000,
+                      0x382C0000, 0x382C2000, 0x382C4000, 0x382C6000,
+                      0x382C8000, 0x382CA000, 0x382CC000, 0x382CE000,
+                      0x382D0000, 0x382D2000, 0x382D4000, 0x382D6000,
+                      0x382D8000, 0x382DA000, 0x382DC000, 0x382DE000,
+                      0x382E0000, 0x382E2000, 0x382E4000, 0x382E6000,
+                      0x382E8000, 0x382EA000, 0x382EC000, 0x382EE000,
+                      0x382F0000, 0x382F2000, 0x382F4000, 0x382F6000,
+                      0x382F8000, 0x382FA000, 0x382FC000, 0x382FE000,
+                      0x38300000, 0x38302000, 0x38304000, 0x38306000,
+                      0x38308000, 0x3830A000, 0x3830C000, 0x3830E000,
+                      0x38310000, 0x38312000, 0x38314000, 0x38316000,
+                      0x38318000, 0x3831A000, 0x3831C000, 0x3831E000,
+                      0x38320000, 0x38322000, 0x38324000, 0x38326000,
+                      0x38328000, 0x3832A000, 0x3832C000, 0x3832E000,
+                      0x38330000, 0x38332000, 0x38334000, 0x38336000,
+                      0x38338000, 0x3833A000, 0x3833C000, 0x3833E000,
+                      0x38340000, 0x38342000, 0x38344000, 0x38346000,
+                      0x38348000, 0x3834A000, 0x3834C000, 0x3834E000,
+                      0x38350000, 0x38352000, 0x38354000, 0x38356000,
+                      0x38358000, 0x3835A000, 0x3835C000, 0x3835E000,
+                      0x38360000, 0x38362000, 0x38364000, 0x38366000,
+                      0x38368000, 0x3836A000, 0x3836C000, 0x3836E000,
+                      0x38370000, 0x38372000, 0x38374000, 0x38376000,
+                      0x38378000, 0x3837A000, 0x3837C000, 0x3837E000,
+                      0x38380000, 0x38382000, 0x38384000, 0x38386000,
+                      0x38388000, 0x3838A000, 0x3838C000, 0x3838E000,
+                      0x38390000, 0x38392000, 0x38394000, 0x38396000,
+                      0x38398000, 0x3839A000, 0x3839C000, 0x3839E000,
+                      0x383A0000, 0x383A2000, 0x383A4000, 0x383A6000,
+                      0x383A8000, 0x383AA000, 0x383AC000, 0x383AE000,
+                      0x383B0000, 0x383B2000, 0x383B4000, 0x383B6000,
+                      0x383B8000, 0x383BA000, 0x383BC000, 0x383BE000,
+                      0x383C0000, 0x383C2000, 0x383C4000, 0x383C6000,
+                      0x383C8000, 0x383CA000, 0x383CC000, 0x383CE000,
+                      0x383D0000, 0x383D2000, 0x383D4000, 0x383D6000,
+                      0x383D8000, 0x383DA000, 0x383DC000, 0x383DE000,
+                      0x383E0000, 0x383E2000, 0x383E4000, 0x383E6000,
+                      0x383E8000, 0x383EA000, 0x383EC000, 0x383EE000,
+                      0x383F0000, 0x383F2000, 0x383F4000, 0x383F6000,
+                      0x383F8000, 0x383FA000, 0x383FC000, 0x383FE000,
+                      0x38400000, 0x38402000, 0x38404000, 0x38406000,
+                      0x38408000, 0x3840A000, 0x3840C000, 0x3840E000,
+                      0x38410000, 0x38412000, 0x38414000, 0x38416000,
+                      0x38418000, 0x3841A000, 0x3841C000, 0x3841E000,
+                      0x38420000, 0x38422000, 0x38424000, 0x38426000,
+                      0x38428000, 0x3842A000, 0x3842C000, 0x3842E000,
+                      0x38430000, 0x38432000, 0x38434000, 0x38436000,
+                      0x38438000, 0x3843A000, 0x3843C000, 0x3843E000,
+                      0x38440000, 0x38442000, 0x38444000, 0x38446000,
+                      0x38448000, 0x3844A000, 0x3844C000, 0x3844E000,
+                      0x38450000, 0x38452000, 0x38454000, 0x38456000,
+                      0x38458000, 0x3845A000, 0x3845C000, 0x3845E000,
+                      0x38460000, 0x38462000, 0x38464000, 0x38466000,
+                      0x38468000, 0x3846A000, 0x3846C000, 0x3846E000,
+                      0x38470000, 0x38472000, 0x38474000, 0x38476000,
+                      0x38478000, 0x3847A000, 0x3847C000, 0x3847E000,
+                      0x38480000, 0x38482000, 0x38484000, 0x38486000,
+                      0x38488000, 0x3848A000, 0x3848C000, 0x3848E000,
+                      0x38490000, 0x38492000, 0x38494000, 0x38496000,
+                      0x38498000, 0x3849A000, 0x3849C000, 0x3849E000,
+                      0x384A0000, 0x384A2000, 0x384A4000, 0x384A6000,
+                      0x384A8000, 0x384AA000, 0x384AC000, 0x384AE000,
+                      0x384B0000, 0x384B2000, 0x384B4000, 0x384B6000,
+                      0x384B8000, 0x384BA000, 0x384BC000, 0x384BE000,
+                      0x384C0000, 0x384C2000, 0x384C4000, 0x384C6000,
+                      0x384C8000, 0x384CA000, 0x384CC000, 0x384CE000,
+                      0x384D0000, 0x384D2000, 0x384D4000, 0x384D6000,
+                      0x384D8000, 0x384DA000, 0x384DC000, 0x384DE000,
+                      0x384E0000, 0x384E2000, 0x384E4000, 0x384E6000,
+                      0x384E8000, 0x384EA000, 0x384EC000, 0x384EE000,
+                      0x384F0000, 0x384F2000, 0x384F4000, 0x384F6000,
+                      0x384F8000, 0x384FA000, 0x384FC000, 0x384FE000,
+                      0x38500000, 0x38502000, 0x38504000, 0x38506000,
+                      0x38508000, 0x3850A000, 0x3850C000, 0x3850E000,
+                      0x38510000, 0x38512000, 0x38514000, 0x38516000,
+                      0x38518000, 0x3851A000, 0x3851C000, 0x3851E000,
+                      0x38520000, 0x38522000, 0x38524000, 0x38526000,
+                      0x38528000, 0x3852A000, 0x3852C000, 0x3852E000,
+                      0x38530000, 0x38532000, 0x38534000, 0x38536000,
+                      0x38538000, 0x3853A000, 0x3853C000, 0x3853E000,
+                      0x38540000, 0x38542000, 0x38544000, 0x38546000,
+                      0x38548000, 0x3854A000, 0x3854C000, 0x3854E000,
+                      0x38550000, 0x38552000, 0x38554000, 0x38556000,
+                      0x38558000, 0x3855A000, 0x3855C000, 0x3855E000,
+                      0x38560000, 0x38562000, 0x38564000, 0x38566000,
+                      0x38568000, 0x3856A000, 0x3856C000, 0x3856E000,
+                      0x38570000, 0x38572000, 0x38574000, 0x38576000,
+                      0x38578000, 0x3857A000, 0x3857C000, 0x3857E000,
+                      0x38580000, 0x38582000, 0x38584000, 0x38586000,
+                      0x38588000, 0x3858A000, 0x3858C000, 0x3858E000,
+                      0x38590000, 0x38592000, 0x38594000, 0x38596000,
+                      0x38598000, 0x3859A000, 0x3859C000, 0x3859E000,
+                      0x385A0000, 0x385A2000, 0x385A4000, 0x385A6000,
+                      0x385A8000, 0x385AA000, 0x385AC000, 0x385AE000,
+                      0x385B0000, 0x385B2000, 0x385B4000, 0x385B6000,
+                      0x385B8000, 0x385BA000, 0x385BC000, 0x385BE000,
+                      0x385C0000, 0x385C2000, 0x385C4000, 0x385C6000,
+                      0x385C8000, 0x385CA000, 0x385CC000, 0x385CE000,
+                      0x385D0000, 0x385D2000, 0x385D4000, 0x385D6000,
+                      0x385D8000, 0x385DA000, 0x385DC000, 0x385DE000,
+                      0x385E0000, 0x385E2000, 0x385E4000, 0x385E6000,
+                      0x385E8000, 0x385EA000, 0x385EC000, 0x385EE000,
+                      0x385F0000, 0x385F2000, 0x385F4000, 0x385F6000,
+                      0x385F8000, 0x385FA000, 0x385FC000, 0x385FE000,
+                      0x38600000, 0x38602000, 0x38604000, 0x38606000,
+                      0x38608000, 0x3860A000, 0x3860C000, 0x3860E000,
+                      0x38610000, 0x38612000, 0x38614000, 0x38616000,
+                      0x38618000, 0x3861A000, 0x3861C000, 0x3861E000,
+                      0x38620000, 0x38622000, 0x38624000, 0x38626000,
+                      0x38628000, 0x3862A000, 0x3862C000, 0x3862E000,
+                      0x38630000, 0x38632000, 0x38634000, 0x38636000,
+                      0x38638000, 0x3863A000, 0x3863C000, 0x3863E000,
+                      0x38640000, 0x38642000, 0x38644000, 0x38646000,
+                      0x38648000, 0x3864A000, 0x3864C000, 0x3864E000,
+                      0x38650000, 0x38652000, 0x38654000, 0x38656000,
+                      0x38658000, 0x3865A000, 0x3865C000, 0x3865E000,
+                      0x38660000, 0x38662000, 0x38664000, 0x38666000,
+                      0x38668000, 0x3866A000, 0x3866C000, 0x3866E000,
+                      0x38670000, 0x38672000, 0x38674000, 0x38676000,
+                      0x38678000, 0x3867A000, 0x3867C000, 0x3867E000,
+                      0x38680000, 0x38682000, 0x38684000, 0x38686000,
+                      0x38688000, 0x3868A000, 0x3868C000, 0x3868E000,
+                      0x38690000, 0x38692000, 0x38694000, 0x38696000,
+                      0x38698000, 0x3869A000, 0x3869C000, 0x3869E000,
+                      0x386A0000, 0x386A2000, 0x386A4000, 0x386A6000,
+                      0x386A8000, 0x386AA000, 0x386AC000, 0x386AE000,
+                      0x386B0000, 0x386B2000, 0x386B4000, 0x386B6000,
+                      0x386B8000, 0x386BA000, 0x386BC000, 0x386BE000,
+                      0x386C0000, 0x386C2000, 0x386C4000, 0x386C6000,
+                      0x386C8000, 0x386CA000, 0x386CC000, 0x386CE000,
+                      0x386D0000, 0x386D2000, 0x386D4000, 0x386D6000,
+                      0x386D8000, 0x386DA000, 0x386DC000, 0x386DE000,
+                      0x386E0000, 0x386E2000, 0x386E4000, 0x386E6000,
+                      0x386E8000, 0x386EA000, 0x386EC000, 0x386EE000,
+                      0x386F0000, 0x386F2000, 0x386F4000, 0x386F6000,
+                      0x386F8000, 0x386FA000, 0x386FC000, 0x386FE000,
+                      0x38700000, 0x38702000, 0x38704000, 0x38706000,
+                      0x38708000, 0x3870A000, 0x3870C000, 0x3870E000,
+                      0x38710000, 0x38712000, 0x38714000, 0x38716000,
+                      0x38718000, 0x3871A000, 0x3871C000, 0x3871E000,
+                      0x38720000, 0x38722000, 0x38724000, 0x38726000,
+                      0x38728000, 0x3872A000, 0x3872C000, 0x3872E000,
+                      0x38730000, 0x38732000, 0x38734000, 0x38736000,
+                      0x38738000, 0x3873A000, 0x3873C000, 0x3873E000,
+                      0x38740000, 0x38742000, 0x38744000, 0x38746000,
+                      0x38748000, 0x3874A000, 0x3874C000, 0x3874E000,
+                      0x38750000, 0x38752000, 0x38754000, 0x38756000,
+                      0x38758000, 0x3875A000, 0x3875C000, 0x3875E000,
+                      0x38760000, 0x38762000, 0x38764000, 0x38766000,
+                      0x38768000, 0x3876A000, 0x3876C000, 0x3876E000,
+                      0x38770000, 0x38772000, 0x38774000, 0x38776000,
+                      0x38778000, 0x3877A000, 0x3877C000, 0x3877E000,
+                      0x38780000, 0x38782000, 0x38784000, 0x38786000,
+                      0x38788000, 0x3878A000, 0x3878C000, 0x3878E000,
+                      0x38790000, 0x38792000, 0x38794000, 0x38796000,
+                      0x38798000, 0x3879A000, 0x3879C000, 0x3879E000,
+                      0x387A0000, 0x387A2000, 0x387A4000, 0x387A6000,
+                      0x387A8000, 0x387AA000, 0x387AC000, 0x387AE000,
+                      0x387B0000, 0x387B2000, 0x387B4000, 0x387B6000,
+                      0x387B8000, 0x387BA000, 0x387BC000, 0x387BE000,
+                      0x387C0000, 0x387C2000, 0x387C4000, 0x387C6000,
+                      0x387C8000, 0x387CA000, 0x387CC000, 0x387CE000,
+                      0x387D0000, 0x387D2000, 0x387D4000, 0x387D6000,
+                      0x387D8000, 0x387DA000, 0x387DC000, 0x387DE000,
+                      0x387E0000, 0x387E2000, 0x387E4000, 0x387E6000,
+                      0x387E8000, 0x387EA000, 0x387EC000, 0x387EE000,
+                      0x387F0000, 0x387F2000, 0x387F4000, 0x387F6000,
+                      0x387F8000, 0x387FA000, 0x387FC000, 0x387FE000};
+                  static const uint32 exponent_table[64] = {
+                      0x00000000, 0x00800000, 0x01000000, 0x01800000,
+                      0x02000000, 0x02800000, 0x03000000, 0x03800000,
+                      0x04000000, 0x04800000, 0x05000000, 0x05800000,
+                      0x06000000, 0x06800000, 0x07000000, 0x07800000,
+                      0x08000000, 0x08800000, 0x09000000, 0x09800000,
+                      0x0A000000, 0x0A800000, 0x0B000000, 0x0B800000,
+                      0x0C000000, 0x0C800000, 0x0D000000, 0x0D800000,
+                      0x0E000000, 0x0E800000, 0x0F000000, 0x47800000,
+                      0x80000000, 0x80800000, 0x81000000, 0x81800000,
+                      0x82000000, 0x82800000, 0x83000000, 0x83800000,
+                      0x84000000, 0x84800000, 0x85000000, 0x85800000,
+                      0x86000000, 0x86800000, 0x87000000, 0x87800000,
+                      0x88000000, 0x88800000, 0x89000000, 0x89800000,
+                      0x8A000000, 0x8A800000, 0x8B000000, 0x8B800000,
+                      0x8C000000, 0x8C800000, 0x8D000000, 0x8D800000,
+                      0x8E000000, 0x8E800000, 0x8F000000, 0xC7800000};
+                  static const unsigned short offset_table[64] = {
+                      0,    1024, 1024, 1024, 1024, 1024, 1024, 1024,
+                      1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
+                      1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
+                      1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
+                      0,    1024, 1024, 1024, 1024, 1024, 1024, 1024,
+                      1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
+                      1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024,
+                      1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024};
+                  uint32 bits = mantissa_table[offset_table[value >> 10] +
+                                               (value & 0x3FF)] +
+                                exponent_table[value >> 10];
+                  //			return *reinterpret_cast<float*>(&bits);
+                  ////violating strict aliasing!
+                  float out;
+                  std::memcpy(&out, &bits, sizeof(float));
+                  return out;
+                }
+
+                /// Convert half-precision to IEEE double-precision.
+                /// \param value binary representation of half-precision value
+                /// \return double-precision value
+                inline double half2float_impl(uint16 value, double, true_type) {
+                  typedef bits<float>::type uint32;
+                  typedef bits<double>::type uint64;
+                  uint32 hi = static_cast<uint32>(value & 0x8000) << 16;
+                  int abs = value & 0x7FFF;
+                  if (abs) {
+                    hi |= 0x3F000000 << static_cast<unsigned>(abs >= 0x7C00);
+                    for (; abs < 0x400; abs <<= 1, hi -= 0x100000)
+                      ;
+                    hi += static_cast<uint32>(abs) << 10;
+                  }
+                  uint64 bits = static_cast<uint64>(hi) << 32;
+                  //			return
+                  //*reinterpret_cast<double*>(&bits);
+                  ////violating strict aliasing!
+                  double out;
+                  std::memcpy(&out, &bits, sizeof(double));
+                  return out;
+                }
+
+                /// Convert half-precision to non-IEEE floating point.
+                /// \tparam T type to convert to (builtin integer type)
+                /// \param value binary representation of half-precision value
+                /// \return floating point value
+                template <typename T>
+                T half2float_impl(uint16 value, T, ...) {
+                  T out;
+                  int abs = value & 0x7FFF;
+                  if (abs > 0x7C00)
+                    out = std::numeric_limits<T>::has_quiet_NaN
+                              ? std::numeric_limits<T>::quiet_NaN()
+                              : T();
+                  else if (abs == 0x7C00)
+                    out = std::numeric_limits<T>::has_infinity
+                              ? std::numeric_limits<T>::infinity()
+                              : std::numeric_limits<T>::max();
+                  else if (abs > 0x3FF)
+                    out = std::ldexp(static_cast<T>((abs & 0x3FF) | 0x400),
+                                     (abs >> 10) - 25);
+                  else
+                    out = std::ldexp(static_cast<T>(abs), -24);
+                  return (value & 0x8000) ? -out : out;
+                }
+
+                /// Convert half-precision to floating point.
+                /// \tparam T type to convert to (builtin integer type)
+                /// \param value binary representation of half-precision value
+                /// \return floating point value
+                template <typename T>
+                T half2float(uint16 value) {
+                  return half2float_impl(
+                      value, T(),
+                      bool_type < std::numeric_limits<T>::is_iec559 &&
+                          sizeof(typename bits<T>::type) == sizeof(T) > ());
+                }
+
+                /// Convert half-precision floating point to integer.
+                /// \tparam R rounding mode to use, `std::round_indeterminate`
+                /// for fastest rounding \tparam E `true` for round to even,
+                /// `false` for round away from zero \tparam T type to convert
+                /// to (buitlin integer type with at least 16 bits precision,
+                /// excluding any implicit sign bits) \param value binary
+                /// representation of half-precision value \return integral
+                /// value
+                template <std::float_round_style R, bool E, typename T>
+                T half2int_impl(uint16 value) {
+#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
+                  static_assert(std::is_integral<T>::value,
+                                "half to int conversion only supports builtin "
+                                "integer types");
+#endif
+                  unsigned int e = value & 0x7FFF;
+                  if (e >= 0x7C00)
+                    return (value & 0x8000) ? std::numeric_limits<T>::min()
+                                            : std::numeric_limits<T>::max();
+                  if (e < 0x3800) {
+                    if (R == std::round_toward_infinity)
+                      return T(~(value >> 15) & (e != 0));
+                    else if (R == std::round_toward_neg_infinity)
+                      return -T(value > 0x8000);
+                    return T();
+                  }
+                  unsigned int m = (value & 0x3FF) | 0x400;
+                  e >>= 10;
+                  if (e < 25) {
+                    if (R == std::round_to_nearest)
+                      m += (1 << (24 - e)) - (~(m >> (25 - e)) & E);
+                    else if (R == std::round_toward_infinity)
+                      m += ((value >> 15) - 1) & ((1 << (25 - e)) - 1U);
+                    else if (R == std::round_toward_neg_infinity)
+                      m += -(value >> 15) & ((1 << (25 - e)) - 1U);
+                    m >>= 25 - e;
+                  } else
+                    m <<= e - 25;
+                  return (value & 0x8000) ? -static_cast<T>(m)
+                                          : static_cast<T>(m);
+                }
+
+                /// Convert half-precision floating point to integer.
+                /// \tparam R rounding mode to use, `std::round_indeterminate`
+                /// for fastest rounding \tparam T type to convert to (buitlin
+                /// integer type with at least 16 bits precision, excluding any
+                /// implicit sign bits) \param value binary representation of
+                /// half-precision value \return integral value
+                template <std::float_round_style R, typename T>
+                T half2int(uint16 value) {
+                  return half2int_impl<R, HALF_ROUND_TIES_TO_EVEN, T>(value);
+                }
+
+                /// Convert half-precision floating point to integer using
+                /// round-to-nearest-away-from-zero. \tparam T type to convert
+                /// to (buitlin integer type with at least 16 bits precision,
+                /// excluding any implicit sign bits) \param value binary
+                /// representation of half-precision value \return integral
+                /// value
+                template <typename T>
+                T half2int_up(uint16 value) {
+                  return half2int_impl<std::round_to_nearest, 0, T>(value);
+                }
+
+                /// Round half-precision number to nearest integer value.
+                /// \tparam R rounding mode to use, `std::round_indeterminate`
+                /// for fastest rounding \tparam E `true` for round to even,
+                /// `false` for round away from zero \param value binary
+                /// representation of half-precision value \return
+                /// half-precision bits for nearest integral value
+                template <std::float_round_style R, bool E>
+                uint16 round_half_impl(uint16 value) {
+                  unsigned int e = value & 0x7FFF;
+                  uint16 result = value;
+                  if (e < 0x3C00) {
+                    result &= 0x8000;
+                    if (R == std::round_to_nearest)
+                      result |= 0x3C00U & -(e >= (0x3800 + E));
+                    else if (R == std::round_toward_infinity)
+                      result |= 0x3C00U & -(~(value >> 15) & (e != 0));
+                    else if (R == std::round_toward_neg_infinity)
+                      result |= 0x3C00U & -(value > 0x8000);
+                  } else if (e < 0x6400) {
+                    e = 25 - (e >> 10);
+                    unsigned int mask = (1 << e) - 1;
+                    if (R == std::round_to_nearest)
+                      result += (1 << (e - 1)) - (~(result >> e) & E);
+                    else if (R == std::round_toward_infinity)
+                      result += mask & ((value >> 15) - 1);
+                    else if (R == std::round_toward_neg_infinity)
+                      result += mask & -(value >> 15);
+                    result &= ~mask;
+                  }
+                  return result;
+                }
+
+                /// Round half-precision number to nearest integer value.
+                /// \tparam R rounding mode to use, `std::round_indeterminate`
+                /// for fastest rounding \param value binary representation of
+                /// half-precision value \return half-precision bits for nearest
+                /// integral value
+                template <std::float_round_style R>
+                uint16 round_half(uint16 value) {
+                  return round_half_impl<R, HALF_ROUND_TIES_TO_EVEN>(value);
+                }
+
+                /// Round half-precision number to nearest integer value using
+                /// round-to-nearest-away-from-zero. \param value binary
+                /// representation of half-precision value \return
+                /// half-precision bits for nearest integral value
+                inline uint16 round_half_up(uint16 value) {
+                  return round_half_impl<std::round_to_nearest, 0>(value);
+                }
+                /// \}
+
+                struct functions;
+		template<typename> struct unary_specialized;
+		template<typename,typename> struct binary_specialized;
+		template<typename,typename,std::float_round_style> struct half_caster;
+	}
+
+        /// Half-precision floating point type.
+        /// This class implements an IEEE-conformant half-precision floating
+        /// point type with the usual arithmetic operators and conversions. It
+        /// is implicitly convertible to single-precision floating point, which
+        /// makes artihmetic expressions and functions with mixed-type operands
+        /// to be of the most precise operand type. Additionally all arithmetic
+        /// operations (and many mathematical functions) are carried out in
+        /// single-precision internally. All conversions from single- to
+        /// half-precision are done using the library's default rounding mode,
+        /// but temporary results inside chained arithmetic expressions are kept
+        /// in single-precision as long as possible (while of course still
+        /// maintaining a strong half-precision type).
+        ///
+        /// According to the C++98/03 definition, the half type is not a POD
+        /// type. But according to C++11's less strict and extended definitions
+        /// it is both a standard layout type and a trivially copyable type
+        /// (even if not a POD type), which means it can be
+        /// standard-conformantly copied using raw binary copies. But in this
+        /// context some more words about the actual size of the type. Although
+        /// the half is representing an IEEE 16-bit type, it does not
+        /// neccessarily have to be of exactly 16-bits size. But on any
+        /// reasonable implementation the actual binary representation of this
+        /// type will most probably not ivolve any additional "magic" or padding
+        /// beyond the simple binary representation of the underlying 16-bit
+        /// IEEE number, even if not strictly guaranteed by the standard. But
+        /// even then it only has an actual size of 16 bits if your C++
+        /// implementation supports an unsigned integer type of exactly 16 bits
+        /// width. But this should be the case on nearly any reasonable
+        /// platform.
+        ///
+        /// So if your C++ implementation is not totally exotic or imposes
+        /// special alignment requirements, it is a reasonable assumption that
+        /// the data of a half is just comprised of the 2 bytes of the
+        /// underlying IEEE representation.
+        class half {
+          friend struct detail::functions;
+          friend struct detail::unary_specialized<half>;
+          friend struct detail::binary_specialized<half, half>;
+          template <typename, typename, std::float_round_style>
+          friend struct detail::half_caster;
+          friend class std::numeric_limits<half>;
+#if HALF_ENABLE_CPP11_HASH
+          friend struct std::hash<half>;
+#endif
+#if HALF_ENABLE_CPP11_USER_LITERALS
+          friend half literal::operator""_h(long double);
+#endif
+
+         public:
+          /// Default constructor.
+          /// This initializes the half to 0. Although this does not match
+          /// the builtin types' default-initialization semantics and may
+          /// be less efficient than no initialization, it is needed to
+          /// provide proper value-initialization semantics.
+          HALF_CONSTEXPR half() HALF_NOEXCEPT : data_() {}
+
+          /// Copy constructor.
+          /// \tparam T type of concrete half expression
+          /// \param rhs half expression to copy from
+          half(detail::expr rhs)
+              : data_(
+                    detail::float2half<round_style>(static_cast<float>(rhs))) {}
+
+          /// Conversion constructor.
+          /// \param rhs float to convert
+          explicit half(float rhs)
+              : data_(detail::float2half<round_style>(rhs)) {}
+
+          /// Conversion to single-precision.
+          /// \return single precision value representing expression value
+          operator float() const { return detail::half2float<float>(data_); }
+
+          /// Assignment operator.
+          /// \tparam T type of concrete half expression
+          /// \param rhs half expression to copy from
+          /// \return reference to this half
+          half &operator=(detail::expr rhs) {
+            return *this = static_cast<float>(rhs);
+          }
+
+          /// Arithmetic assignment.
+          /// \tparam T type of concrete half expression
+          /// \param rhs half expression to add
+          /// \return reference to this half
+          template <typename T>
+          typename detail::enable<half &, T>::type operator+=(T rhs) {
+            return *this += static_cast<float>(rhs);
+          }
+
+          /// Arithmetic assignment.
+          /// \tparam T type of concrete half expression
+          /// \param rhs half expression to subtract
+          /// \return reference to this half
+          template <typename T>
+          typename detail::enable<half &, T>::type operator-=(T rhs) {
+            return *this -= static_cast<float>(rhs);
+          }
+
+          /// Arithmetic assignment.
+          /// \tparam T type of concrete half expression
+          /// \param rhs half expression to multiply with
+          /// \return reference to this half
+          template <typename T>
+          typename detail::enable<half &, T>::type operator*=(T rhs) {
+            return *this *= static_cast<float>(rhs);
+          }
+
+          /// Arithmetic assignment.
+          /// \tparam T type of concrete half expression
+          /// \param rhs half expression to divide by
+          /// \return reference to this half
+          template <typename T>
+          typename detail::enable<half &, T>::type operator/=(T rhs) {
+            return *this /= static_cast<float>(rhs);
+          }
+
+          /// Assignment operator.
+          /// \param rhs single-precision value to copy from
+          /// \return reference to this half
+          half &operator=(float rhs) {
+            data_ = detail::float2half<round_style>(rhs);
+            return *this;
+          }
+
+          /// Arithmetic assignment.
+          /// \param rhs single-precision value to add
+          /// \return reference to this half
+          half &operator+=(float rhs) {
+            data_ = detail::float2half<round_style>(
+                detail::half2float<float>(data_) + rhs);
+            return *this;
+          }
+
+          /// Arithmetic assignment.
+          /// \param rhs single-precision value to subtract
+          /// \return reference to this half
+          half &operator-=(float rhs) {
+            data_ = detail::float2half<round_style>(
+                detail::half2float<float>(data_) - rhs);
+            return *this;
+          }
+
+          /// Arithmetic assignment.
+          /// \param rhs single-precision value to multiply with
+          /// \return reference to this half
+          half &operator*=(float rhs) {
+            data_ = detail::float2half<round_style>(
+                detail::half2float<float>(data_) * rhs);
+            return *this;
+          }
+
+          /// Arithmetic assignment.
+          /// \param rhs single-precision value to divide by
+          /// \return reference to this half
+          half &operator/=(float rhs) {
+            data_ = detail::float2half<round_style>(
+                detail::half2float<float>(data_) / rhs);
+            return *this;
+          }
+
+          /// Prefix increment.
+          /// \return incremented half value
+          half &operator++() { return *this += 1.0f; }
+
+          /// Prefix decrement.
+          /// \return decremented half value
+          half &operator--() { return *this -= 1.0f; }
+
+          /// Postfix increment.
+          /// \return non-incremented half value
+          half operator++(int) {
+            half out(*this);
+            ++*this;
+            return out;
+          }
+
+          /// Postfix decrement.
+          /// \return non-decremented half value
+          half operator--(int) {
+            half out(*this);
+            --*this;
+            return out;
+          }
+
+         private:
+          /// Rounding mode to use
+          static const std::float_round_style round_style =
+              (std::float_round_style)(HALF_ROUND_STYLE);
+
+          /// Constructor.
+          /// \param bits binary representation to set half to
+          HALF_CONSTEXPR half(detail::binary_t,
+                              detail::uint16 bits) HALF_NOEXCEPT : data_(bits) {
+          }
+
+          /// Internal binary representation
+          detail::uint16 data_;
+        };
+
+#if HALF_ENABLE_CPP11_USER_LITERALS
+	namespace literal
+	{
+        /// Half literal.
+        /// While this returns an actual half-precision value, half literals can
+        /// unfortunately not be constant expressions due to rather involved
+        /// conversions. \param value literal value \return half with given
+        /// value (if representable)
+        inline half operator""_h(long double value) {
+          return half(detail::binary,
+                      detail::float2half<half::round_style>(value));
+        }
+        }  // namespace literal
+#endif
+
+	namespace detail
+	{
+		/// Wrapper implementing unspecialized half-precision functions.
+		struct functions
+		{
+			/// Addition implementation.
+			/// \param x first operand
+			/// \param y second operand
+			/// \return Half-precision sum stored in single-precision
+			static expr plus(float x, float y) { return expr(x+y); }
+
+			/// Subtraction implementation.
+			/// \param x first operand
+			/// \param y second operand
+			/// \return Half-precision difference stored in single-precision
+			static expr minus(float x, float y) { return expr(x-y); }
+
+			/// Multiplication implementation.
+			/// \param x first operand
+			/// \param y second operand
+			/// \return Half-precision product stored in single-precision
+			static expr multiplies(float x, float y) { return expr(x*y); }
+
+			/// Division implementation.
+			/// \param x first operand
+			/// \param y second operand
+			/// \return Half-precision quotient stored in single-precision
+			static expr divides(float x, float y) { return expr(x/y); }
+
+			/// Output implementation.
+			/// \param out stream to write to
+			/// \param arg value to write
+			/// \return reference to stream
+			template<typename charT,typename traits> static std::basic_ostream<charT,traits>& write(std::basic_ostream<charT,traits> &out, float arg) { return out << arg; }
+
+			/// Input implementation.
+			/// \param in stream to read from
+			/// \param arg half to read into
+			/// \return reference to stream
+			template<typename charT,typename traits> static std::basic_istream<charT,traits>& read(std::basic_istream<charT,traits> &in, half &arg)
+			{
+				float f;
+				if(in >> f)
+					arg = f;
+				return in;
+			}
+
+                        /// Modulo implementation.
+                        /// \param x first operand
+                        /// \param y second operand
+                        /// \return Half-precision division remainder stored in
+                        /// single-precision
+                        static expr fmod(float x, float y) {
+                          return expr(std::fmod(x, y));
+                        }
+
+                        /// Remainder implementation.
+                        /// \param x first operand
+                        /// \param y second operand
+                        /// \return Half-precision division remainder stored in
+                        /// single-precision
+                        static expr remainder(float x, float y) {
+#if HALF_ENABLE_CPP11_CMATH
+                          return expr(std::remainder(x, y));
+#else
+                          if (builtin_isnan(x) || builtin_isnan(y))
+                            return expr(
+                                std::numeric_limits<float>::quiet_NaN());
+                          float ax = std::fabs(x), ay = std::fabs(y);
+                          if (ax >= 65536.0f || ay < std::ldexp(1.0f, -24))
+                            return expr(
+                                std::numeric_limits<float>::quiet_NaN());
+                          if (ay >= 65536.0f) return expr(x);
+                          if (ax == ay)
+                            return expr(builtin_signbit(x) ? -0.0f : 0.0f);
+                          ax = std::fmod(ax, ay + ay);
+                          float y2 = 0.5f * ay;
+                          if (ax > y2) {
+                            ax -= ay;
+                            if (ax >= y2) ax -= ay;
+                          }
+                          return expr(builtin_signbit(x) ? -ax : ax);
+#endif
+                        }
+
+                        /// Remainder implementation.
+                        /// \param x first operand
+                        /// \param y second operand
+                        /// \param quo address to store quotient bits at
+                        /// \return Half-precision division remainder stored in
+                        /// single-precision
+                        static expr remquo(float x, float y, int *quo) {
+#if HALF_ENABLE_CPP11_CMATH
+                          return expr(std::remquo(x, y, quo));
+#else
+                          if (builtin_isnan(x) || builtin_isnan(y))
+                            return expr(
+                                std::numeric_limits<float>::quiet_NaN());
+                          bool sign = builtin_signbit(x),
+                               qsign =
+                                   static_cast<bool>(sign ^ builtin_signbit(y));
+                          float ax = std::fabs(x), ay = std::fabs(y);
+                          if (ax >= 65536.0f || ay < std::ldexp(1.0f, -24))
+                            return expr(
+                                std::numeric_limits<float>::quiet_NaN());
+                          if (ay >= 65536.0f) return expr(x);
+                          if (ax == ay)
+                            return *quo = qsign ? -1 : 1,
+                                   expr(sign ? -0.0f : 0.0f);
+                          ax = std::fmod(ax, 8.0f * ay);
+                          int cquo = 0;
+                          if (ax >= 4.0f * ay) {
+                            ax -= 4.0f * ay;
+                            cquo += 4;
+                          }
+                          if (ax >= 2.0f * ay) {
+                            ax -= 2.0f * ay;
+                            cquo += 2;
+                          }
+                          float y2 = 0.5f * ay;
+                          if (ax > y2) {
+                            ax -= ay;
+                            ++cquo;
+                            if (ax >= y2) {
+                              ax -= ay;
+                              ++cquo;
+                            }
+                          }
+                          return *quo = qsign ? -cquo : cquo,
+                                 expr(sign ? -ax : ax);
+#endif
+                        }
+
+                        /// Positive difference implementation.
+                        /// \param x first operand
+                        /// \param y second operand
+                        /// \return Positive difference stored in
+                        /// single-precision
+                        static expr fdim(float x, float y)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::fdim(x, y));
+			#else
+                          return expr((x <= y) ? 0.0f : (x - y));
+#endif
+                        }
+
+			/// Fused multiply-add implementation.
+			/// \param x first operand
+			/// \param y second operand
+			/// \param z third operand
+			/// \return \a x * \a y + \a z stored in single-precision
+			static expr fma(float x, float y, float z)
+			{
+			#if HALF_ENABLE_CPP11_CMATH && defined(FP_FAST_FMAF)
+				return expr(std::fma(x, y, z));
+			#else
+				return expr(x*y+z);
+			#endif
+			}
+
+			/// Get NaN.
+			/// \return Half-precision quiet NaN
+                        static half nanh() { return half(binary, 0x7FFF); }
+
+                        /// Exponential implementation.
+                        /// \param arg function argument
+                        /// \return function value stored in single-preicision
+                        static expr exp(float arg) { return expr(std::exp(arg)); }
+
+			/// Exponential implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr expm1(float arg)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::expm1(arg));
+			#else
+                          return expr(static_cast<float>(
+                              std::exp(static_cast<double>(arg)) - 1.0));
+#endif
+                        }
+
+			/// Binary exponential implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr exp2(float arg)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::exp2(arg));
+			#else
+                          return expr(static_cast<float>(std::exp(
+                              arg * 0.69314718055994530941723212145818)));
+#endif
+                        }
+
+			/// Logarithm implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr log(float arg) { return expr(std::log(arg)); }
+
+			/// Common logarithm implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr log10(float arg) { return expr(std::log10(arg)); }
+
+			/// Logarithm implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr log1p(float arg)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::log1p(arg));
+			#else
+                          return expr(static_cast<float>(std::log(1.0 + arg)));
+#endif
+                        }
+
+			/// Binary logarithm implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr log2(float arg)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::log2(arg));
+			#else
+                          return expr(static_cast<float>(
+                              std::log(static_cast<double>(arg)) *
+                              1.4426950408889634073599246810019));
+#endif
+                        }
+
+			/// Square root implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr sqrt(float arg) { return expr(std::sqrt(arg)); }
+
+                        /// Cubic root implementation.
+                        /// \param arg function argument
+                        /// \return function value stored in single-preicision
+                        static expr cbrt(float arg) {
+#if HALF_ENABLE_CPP11_CMATH
+                          return expr(std::cbrt(arg));
+#else
+                          if (builtin_isnan(arg) || builtin_isinf(arg))
+                            return expr(arg);
+                          return expr(
+                              builtin_signbit(arg)
+                                  ? -static_cast<float>(std::pow(
+                                        -static_cast<double>(arg), 1.0 / 3.0))
+                                  : static_cast<float>(std::pow(
+                                        static_cast<double>(arg), 1.0 / 3.0)));
+#endif
+                        }
+
+                        /// Hypotenuse implementation.
+                        /// \param x first argument
+                        /// \param y second argument
+                        /// \return function value stored in single-preicision
+                        static expr hypot(float x, float y)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::hypot(x, y));
+			#else
+                          return expr(
+                              (builtin_isinf(x) || builtin_isinf(y))
+                                  ? std::numeric_limits<float>::infinity()
+                                  : static_cast<float>(
+                                        std::sqrt(static_cast<double>(x) * x +
+                                                  static_cast<double>(y) * y)));
+#endif
+                        }
+
+			/// Power implementation.
+			/// \param base value to exponentiate
+			/// \param exp power to expontiate to
+			/// \return function value stored in single-preicision
+			static expr pow(float base, float exp) { return expr(std::pow(base, exp)); }
+
+			/// Sine implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr sin(float arg) { return expr(std::sin(arg)); }
+
+			/// Cosine implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr cos(float arg) { return expr(std::cos(arg)); }
+
+			/// Tan implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr tan(float arg) { return expr(std::tan(arg)); }
+
+			/// Arc sine implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr asin(float arg) { return expr(std::asin(arg)); }
+
+			/// Arc cosine implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr acos(float arg) { return expr(std::acos(arg)); }
+
+			/// Arc tangent implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr atan(float arg) { return expr(std::atan(arg)); }
+
+			/// Arc tangent implementation.
+			/// \param x first argument
+			/// \param y second argument
+			/// \return function value stored in single-preicision
+			static expr atan2(float x, float y) { return expr(std::atan2(x, y)); }
+
+			/// Hyperbolic sine implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr sinh(float arg) { return expr(std::sinh(arg)); }
+
+			/// Hyperbolic cosine implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr cosh(float arg) { return expr(std::cosh(arg)); }
+
+			/// Hyperbolic tangent implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr tanh(float arg) { return expr(std::tanh(arg)); }
+
+			/// Hyperbolic area sine implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr asinh(float arg)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::asinh(arg));
+			#else
+                          return expr(
+                              (arg == -std::numeric_limits<float>::infinity())
+                                  ? arg
+                                  : static_cast<float>(std::log(
+                                        arg + std::sqrt(arg * arg + 1.0))));
+#endif
+                        }
+
+			/// Hyperbolic area cosine implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr acosh(float arg)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::acosh(arg));
+			#else
+                          return expr(
+                              (arg < -1.0f)
+                                  ? std::numeric_limits<float>::quiet_NaN()
+                                  : static_cast<float>(std::log(
+                                        arg + std::sqrt(arg * arg - 1.0))));
+#endif
+                        }
+
+			/// Hyperbolic area tangent implementation.
+			/// \param arg function argument
+			/// \return function value stored in single-preicision
+			static expr atanh(float arg)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::atanh(arg));
+			#else
+                          return expr(static_cast<float>(
+                              0.5 * std::log((1.0 + arg) / (1.0 - arg))));
+#endif
+                        }
+
+                        /// Error function implementation.
+                        /// \param arg function argument
+                        /// \return function value stored in single-preicision
+                        static expr erf(float arg) {
+#if HALF_ENABLE_CPP11_CMATH
+                          return expr(std::erf(arg));
+#else
+                          return expr(static_cast<float>(
+                              erf(static_cast<double>(arg))));
+#endif
+                        }
+
+                        /// Complementary implementation.
+                        /// \param arg function argument
+                        /// \return function value stored in single-preicision
+                        static expr erfc(float arg) {
+#if HALF_ENABLE_CPP11_CMATH
+                          return expr(std::erfc(arg));
+#else
+                          return expr(static_cast<float>(
+                              1.0 - erf(static_cast<double>(arg))));
+#endif
+                        }
+
+                        /// Gamma logarithm implementation.
+                        /// \param arg function argument
+                        /// \return function value stored in single-preicision
+                        static expr lgamma(float arg) {
+#if HALF_ENABLE_CPP11_CMATH
+                          return expr(std::lgamma(arg));
+#else
+                          if (builtin_isinf(arg))
+                            return expr(std::numeric_limits<float>::infinity());
+                          if (arg < 0.0f) {
+                            float i, f = std::modf(-arg, &i);
+                            if (f == 0.0f)
+                              return expr(
+                                  std::numeric_limits<float>::infinity());
+                            return expr(static_cast<float>(
+                                1.1447298858494001741434273513531 -
+                                std::log(std::abs(std::sin(
+                                    3.1415926535897932384626433832795 * f))) -
+                                lgamma(1.0 - arg)));
+                          }
+                          return expr(static_cast<float>(
+                              lgamma(static_cast<double>(arg))));
+#endif
+                        }
+
+                        /// Gamma implementation.
+                        /// \param arg function argument
+                        /// \return function value stored in single-preicision
+                        static expr tgamma(float arg) {
+#if HALF_ENABLE_CPP11_CMATH
+                          return expr(std::tgamma(arg));
+#else
+                          if (arg == 0.0f)
+                            return builtin_signbit(arg)
+                                       ? expr(-std::numeric_limits<
+                                              float>::infinity())
+                                       : expr(std::numeric_limits<
+                                              float>::infinity());
+                          if (arg < 0.0f) {
+                            float i, f = std::modf(-arg, &i);
+                            if (f == 0.0f)
+                              return expr(
+                                  std::numeric_limits<float>::quiet_NaN());
+                            double value =
+                                3.1415926535897932384626433832795 /
+                                (std::sin(3.1415926535897932384626433832795 *
+                                          f) *
+                                 std::exp(lgamma(1.0 - arg)));
+                            return expr(static_cast<float>(
+                                (std::fmod(i, 2.0f) == 0.0f) ? -value : value));
+                          }
+                          if (builtin_isinf(arg)) return expr(arg);
+                          return expr(static_cast<float>(
+                              std::exp(lgamma(static_cast<double>(arg)))));
+#endif
+                        }
+
+                        /// Floor implementation.
+                        /// \param arg value to round
+                        /// \return rounded value
+                        static half floor(half arg) {
+                          return half(
+                              binary,
+                              round_half<std::round_toward_neg_infinity>(
+                                  arg.data_));
+                        }
+
+                        /// Ceiling implementation.
+                        /// \param arg value to round
+                        /// \return rounded value
+                        static half ceil(half arg) {
+                          return half(binary,
+                                      round_half<std::round_toward_infinity>(
+                                          arg.data_));
+                        }
+
+                        /// Truncation implementation.
+                        /// \param arg value to round
+                        /// \return rounded value
+                        static half trunc(half arg) {
+                          return half(
+                              binary,
+                              round_half<std::round_toward_zero>(arg.data_));
+                        }
+
+                        /// Nearest integer implementation.
+                        /// \param arg value to round
+                        /// \return rounded value
+                        static half round(half arg) {
+                          return half(binary, round_half_up(arg.data_));
+                        }
+
+                        /// Nearest integer implementation.
+                        /// \param arg value to round
+                        /// \return rounded value
+                        static long lround(half arg) {
+                          return detail::half2int_up<long>(arg.data_);
+                        }
+
+                        /// Nearest integer implementation.
+                        /// \param arg value to round
+                        /// \return rounded value
+                        static half rint(half arg) {
+                          return half(binary,
+                                      round_half<half::round_style>(arg.data_));
+                        }
+
+                        /// Nearest integer implementation.
+                        /// \param arg value to round
+                        /// \return rounded value
+                        static long lrint(half arg) {
+                          return detail::half2int<half::round_style, long>(
+                              arg.data_);
+                        }
+
+#if HALF_ENABLE_CPP11_LONG_LONG
+                        /// Nearest integer implementation.
+			/// \param arg value to round
+			/// \return rounded value
+                        static long long llround(half arg) {
+                          return detail::half2int_up<long long>(arg.data_);
+                        }
+
+                        /// Nearest integer implementation.
+                        /// \param arg value to round
+                        /// \return rounded value
+                        static long long llrint(half arg) {
+                          return detail::half2int<half::round_style, long long>(
+                              arg.data_);
+                        }
+#endif
+
+                        /// Decompression implementation.
+                        /// \param arg number to decompress
+                        /// \param exp address to store exponent at
+                        /// \return normalized significant
+                        static half frexp(half arg, int *exp)
+			{
+                          int m = arg.data_ & 0x7FFF, e = -14;
+                          if (m >= 0x7C00 || !m) return *exp = 0, arg;
+                          for (; m < 0x400; m <<= 1, --e)
+                            ;
+                          return *exp = e + (m >> 10),
+                                 half(binary, (arg.data_ & 0x8000) | 0x3800 |
+                                                  (m & 0x3FF));
+                        }
+
+                        /// Decompression implementation.
+			/// \param arg number to decompress
+			/// \param iptr address to store integer part at
+			/// \return fractional part
+			static half modf(half arg, half *iptr)
+			{
+                          unsigned int e = arg.data_ & 0x7FFF;
+                          if (e >= 0x6400)
+                            return *iptr = arg,
+                                   half(binary,
+                                        arg.data_ & (0x8000U | -(e > 0x7C00)));
+                          if (e < 0x3C00)
+                            return iptr->data_ = arg.data_ & 0x8000, arg;
+                          e >>= 10;
+                          unsigned int mask = (1 << (25 - e)) - 1,
+                                       m = arg.data_ & mask;
+                          iptr->data_ = arg.data_ & ~mask;
+                          if (!m) return half(binary, arg.data_ & 0x8000);
+                          for (; m < 0x400; m <<= 1, --e)
+                            ;
+                          return half(binary, static_cast<uint16>(
+                                                  (arg.data_ & 0x8000) |
+                                                  (e << 10) | (m & 0x3FF)));
+                        }
+
+                        /// Scaling implementation.
+			/// \param arg number to scale
+			/// \param exp power of two to scale by
+			/// \return scaled number
+			static half scalbln(half arg, long exp)
+			{
+                          unsigned int m = arg.data_ & 0x7FFF;
+                          if (m >= 0x7C00 || !m) return arg;
+                          for (; m < 0x400; m <<= 1, --exp)
+                            ;
+                          exp += m >> 10;
+                          uint16 value = arg.data_ & 0x8000;
+                          if (exp > 30) {
+                            if (half::round_style == std::round_toward_zero)
+                              value |= 0x7BFF;
+                            else if (half::round_style ==
+                                     std::round_toward_infinity)
+                              value |= 0x7C00 - (value >> 15);
+                            else if (half::round_style ==
+                                     std::round_toward_neg_infinity)
+                              value |= 0x7BFF + (value >> 15);
+                            else
+                              value |= 0x7C00;
+                          } else if (exp > 0)
+                            value |= (exp << 10) | (m & 0x3FF);
+                          else if (exp > -11) {
+                            m = (m & 0x3FF) | 0x400;
+                            if (half::round_style == std::round_to_nearest) {
+                              m += 1 << -exp;
+#if HALF_ROUND_TIES_TO_EVEN
+                              m -= (m >> (1 - exp)) & 1;
+#endif
+                            } else if (half::round_style ==
+                                       std::round_toward_infinity)
+                              m +=
+                                  ((value >> 15) - 1) & ((1 << (1 - exp)) - 1U);
+                            else if (half::round_style ==
+                                     std::round_toward_neg_infinity)
+                              m += -(value >> 15) & ((1 << (1 - exp)) - 1U);
+                            value |= m >> (1 - exp);
+                          } else if (half::round_style ==
+                                     std::round_toward_infinity)
+                            value -= (value >> 15) - 1;
+                          else if (half::round_style ==
+                                   std::round_toward_neg_infinity)
+                            value += value >> 15;
+                          return half(binary, value);
+                        }
+
+                        /// Exponent implementation.
+			/// \param arg number to query
+			/// \return floating point exponent
+			static int ilogb(half arg)
+			{
+                          int abs = arg.data_ & 0x7FFF;
+                          if (!abs) return FP_ILOGB0;
+                          if (abs < 0x7C00) {
+                            int exp = (abs >> 10) - 15;
+                            if (abs < 0x400)
+                              for (; abs < 0x200; abs <<= 1, --exp)
+                                ;
+                            return exp;
+                          }
+                          if (abs > 0x7C00) return FP_ILOGBNAN;
+                          return INT_MAX;
+                        }
+
+                        /// Exponent implementation.
+			/// \param arg number to query
+			/// \return floating point exponent
+			static half logb(half arg)
+			{
+                          int abs = arg.data_ & 0x7FFF;
+                          if (!abs) return half(binary, 0xFC00);
+                          if (abs < 0x7C00) {
+                            int exp = (abs >> 10) - 15;
+                            if (abs < 0x400)
+                              for (; abs < 0x200; abs <<= 1, --exp)
+                                ;
+                            uint16 bits = (exp < 0) << 15;
+                            if (exp) {
+                              unsigned int m = std::abs(exp) << 6, e = 18;
+                              for (; m < 0x400; m <<= 1, --e)
+                                ;
+                              bits |= (e << 10) + m;
+                            }
+                            return half(binary, bits);
+                          }
+                          if (abs > 0x7C00) return arg;
+                          return half(binary, 0x7C00);
+                        }
+
+                        /// Enumeration implementation.
+			/// \param from number to increase/decrease
+			/// \param to direction to enumerate into
+			/// \return next representable number
+			static half nextafter(half from, half to)
+			{
+				uint16 fabs = from.data_ & 0x7FFF, tabs = to.data_ & 0x7FFF;
+				if(fabs > 0x7C00)
+					return from;
+                                if (tabs > 0x7C00 || from.data_ == to.data_ ||
+                                    !(fabs | tabs))
+                                  return to;
+                                if(!fabs)
+                                  return half(binary, (to.data_ & 0x8000) + 1);
+                                bool lt = ((fabs == from.data_)
+                                               ? static_cast<int>(fabs)
+                                               : -static_cast<int>(fabs)) <
+                                          ((tabs == to.data_)
+                                               ? static_cast<int>(tabs)
+                                               : -static_cast<int>(tabs));
+                                return half(binary,
+                                            from.data_ +
+                                                (((from.data_ >> 15) ^
+                                                  static_cast<unsigned>(lt))
+                                                 << 1) -
+                                                1);
+                        }
+
+                        /// Enumeration implementation.
+			/// \param from number to increase/decrease
+			/// \param to direction to enumerate into
+			/// \return next representable number
+			static half nexttoward(half from, long double to)
+			{
+				if(isnan(from))
+					return from;
+				long double lfrom = static_cast<long double>(from);
+				if(builtin_isnan(to) || lfrom == to)
+					return half(static_cast<float>(to));
+				if(!(from.data_&0x7FFF))
+                                  return half(binary,
+                                              (static_cast<detail::uint16>(
+                                                   builtin_signbit(to))
+                                               << 15) +
+                                                  1);
+                                return half(
+                                    binary,
+                                    from.data_ +
+                                        (((from.data_ >> 15) ^
+                                          static_cast<unsigned>(lfrom < to))
+                                         << 1) -
+                                        1);
+                        }
+
+                        /// Sign implementation
+			/// \param x first operand
+			/// \param y second operand
+			/// \return composed value
+                        static half copysign(half x, half y) {
+                          return half(binary,
+                                      x.data_ ^ ((x.data_ ^ y.data_) & 0x8000));
+                        }
+
+                        /// Classification implementation.
+                        /// \param arg value to classify
+                        /// \retval true if infinite number
+                        /// \retval false else
+                        static int fpclassify(half arg)
+			{
+                          unsigned int abs = arg.data_ & 0x7FFF;
+                          return abs ? ((abs > 0x3FF)
+                                            ? ((abs >= 0x7C00)
+                                                   ? ((abs > 0x7C00)
+                                                          ? FP_NAN
+                                                          : FP_INFINITE)
+                                                   : FP_NORMAL)
+                                            : FP_SUBNORMAL)
+                                     : FP_ZERO;
+                        }
+
+                        /// Classification implementation.
+			/// \param arg value to classify
+			/// \retval true if finite number
+			/// \retval false else
+			static bool isfinite(half arg) { return (arg.data_&0x7C00) != 0x7C00; }
+
+			/// Classification implementation.
+			/// \param arg value to classify
+			/// \retval true if infinite number
+			/// \retval false else
+			static bool isinf(half arg) { return (arg.data_&0x7FFF) == 0x7C00; }
+
+			/// Classification implementation.
+			/// \param arg value to classify
+			/// \retval true if not a number
+			/// \retval false else
+			static bool isnan(half arg) { return (arg.data_&0x7FFF) > 0x7C00; }
+
+			/// Classification implementation.
+			/// \param arg value to classify
+			/// \retval true if normal number
+			/// \retval false else
+			static bool isnormal(half arg) { return ((arg.data_&0x7C00)!=0) & ((arg.data_&0x7C00)!=0x7C00); }
+
+			/// Sign bit implementation.
+			/// \param arg value to check
+			/// \retval true if signed
+			/// \retval false if unsigned
+			static bool signbit(half arg) { return (arg.data_&0x8000) != 0; }
+
+			/// Comparison implementation.
+			/// \param x first operand
+			/// \param y second operand
+			/// \retval true if operands equal
+			/// \retval false else
+			static bool isequal(half x, half y) { return (x.data_==y.data_ || !((x.data_|y.data_)&0x7FFF)) && !isnan(x); }
+
+			/// Comparison implementation.
+			/// \param x first operand
+			/// \param y second operand
+			/// \retval true if operands not equal
+			/// \retval false else
+			static bool isnotequal(half x, half y) { return (x.data_!=y.data_ && ((x.data_|y.data_)&0x7FFF)) || isnan(x); }
+
+			/// Comparison implementation.
+			/// \param x first operand
+			/// \param y second operand
+			/// \retval true if \a x > \a y
+			/// \retval false else
+                        static bool isgreater(half x, half y) {
+                          int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
+                          return xabs <= 0x7C00 && yabs <= 0x7C00 &&
+                                 (((xabs == x.data_) ? xabs : -xabs) >
+                                  ((yabs == y.data_) ? yabs : -yabs));
+                        }
+
+                        /// Comparison implementation.
+                        /// \param x first operand
+                        /// \param y second operand
+                        /// \retval true if \a x >= \a y
+                        /// \retval false else
+                        static bool isgreaterequal(half x, half y) {
+                          int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
+                          return xabs <= 0x7C00 && yabs <= 0x7C00 &&
+                                 (((xabs == x.data_) ? xabs : -xabs) >=
+                                  ((yabs == y.data_) ? yabs : -yabs));
+                        }
+
+                        /// Comparison implementation.
+                        /// \param x first operand
+                        /// \param y second operand
+                        /// \retval true if \a x < \a y
+                        /// \retval false else
+                        static bool isless(half x, half y) {
+                          int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
+                          return xabs <= 0x7C00 && yabs <= 0x7C00 &&
+                                 (((xabs == x.data_) ? xabs : -xabs) <
+                                  ((yabs == y.data_) ? yabs : -yabs));
+                        }
+
+                        /// Comparison implementation.
+                        /// \param x first operand
+                        /// \param y second operand
+                        /// \retval true if \a x <= \a y
+                        /// \retval false else
+                        static bool islessequal(half x, half y) {
+                          int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
+                          return xabs <= 0x7C00 && yabs <= 0x7C00 &&
+                                 (((xabs == x.data_) ? xabs : -xabs) <=
+                                  ((yabs == y.data_) ? yabs : -yabs));
+                        }
+
+                        /// Comparison implementation.
+                        /// \param x first operand
+                        /// \param y second operand
+                        /// \retval true if either \a x > \a y nor \a x < \a y
+                        /// \retval false else
+                        static bool islessgreater(half x, half y) {
+                          int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
+                          if (xabs > 0x7C00 || yabs > 0x7C00) return false;
+                          int a = (xabs == x.data_) ? xabs : -xabs,
+                              b = (yabs == y.data_) ? yabs : -yabs;
+                          return a < b || a > b;
+                        }
+
+                        /// Comparison implementation.
+                        /// \param x first operand
+                        /// \param y second operand
+                        /// \retval true if operand unordered
+                        /// \retval false else
+                        static bool isunordered(half x, half y) { return isnan(x) || isnan(y); }
+
+                       private:
+                        static double erf(double arg) {
+                          if (builtin_isinf(arg))
+                            return (arg < 0.0) ? -1.0 : 1.0;
+                          double x2 = arg * arg, ax2 = 0.147 * x2,
+                                 value = std::sqrt(
+                                     1.0 -
+                                     std::exp(
+                                         -x2 *
+                                         (1.2732395447351626861510701069801 +
+                                          ax2) /
+                                         (1.0 + ax2)));
+                          return builtin_signbit(arg) ? -value : value;
+                        }
+
+                        static double lgamma(double arg) {
+                          double v = 1.0;
+                          for (; arg < 8.0; ++arg) v *= arg;
+                          double w = 1.0 / (arg * arg);
+                          return (((((((-0.02955065359477124183006535947712 *
+                                            w +
+                                        0.00641025641025641025641025641026) *
+                                           w +
+                                       -0.00191752691752691752691752691753) *
+                                          w +
+                                      8.4175084175084175084175084175084e-4) *
+                                         w +
+                                     -5.952380952380952380952380952381e-4) *
+                                        w +
+                                    7.9365079365079365079365079365079e-4) *
+                                       w +
+                                   -0.00277777777777777777777777777778) *
+                                      w +
+                                  0.08333333333333333333333333333333) /
+                                     arg +
+                                 0.91893853320467274178032973640562 -
+                                 std::log(v) - arg +
+                                 (arg - 0.5) * std::log(arg);
+                        }
+                };
+
+                /// Wrapper for unary half-precision functions needing specialization for individual argument types.
+		/// \tparam T argument type
+		template<typename T> struct unary_specialized
+		{
+			/// Negation implementation.
+			/// \param arg value to negate
+			/// \return negated value
+                        static HALF_CONSTEXPR half negate(half arg) {
+                          return half(binary, arg.data_ ^ 0x8000);
+                        }
+
+                        /// Absolute value implementation.
+                        /// \param arg function argument
+                        /// \return absolute value
+                        static half fabs(half arg) {
+                          return half(binary, arg.data_ & 0x7FFF);
+                        }
+                };
+                template<> struct unary_specialized<expr>
+		{
+			static HALF_CONSTEXPR expr negate(float arg) { return expr(-arg); }
+			static expr fabs(float arg) { return expr(std::fabs(arg)); }
+		};
+
+		/// Wrapper for binary half-precision functions needing specialization for individual argument types.
+		/// \tparam T first argument type
+		/// \tparam U first argument type
+		template<typename T,typename U> struct binary_specialized
+		{
+			/// Minimum implementation.
+			/// \param x first operand
+			/// \param y second operand
+			/// \return minimum value
+			static expr fmin(float x, float y)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::fmin(x, y));
+			#else
+                          if (builtin_isnan(x)) return expr(y);
+                          if (builtin_isnan(y)) return expr(x);
+                          return expr(std::min(x, y));
+#endif
+			}
+
+			/// Maximum implementation.
+			/// \param x first operand
+			/// \param y second operand
+			/// \return maximum value
+			static expr fmax(float x, float y)
+			{
+			#if HALF_ENABLE_CPP11_CMATH
+				return expr(std::fmax(x, y));
+			#else
+                          if (builtin_isnan(x)) return expr(y);
+                          if (builtin_isnan(y)) return expr(x);
+                          return expr(std::max(x, y));
+#endif
+			}
+		};
+		template<> struct binary_specialized<half,half>
+		{
+                  static half fmin(half x, half y) {
+                    int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
+                    if (xabs > 0x7C00) return y;
+                    if (yabs > 0x7C00) return x;
+                    return (((xabs == x.data_) ? xabs : -xabs) >
+                            ((yabs == y.data_) ? yabs : -yabs))
+                               ? y
+                               : x;
+                  }
+                  static half fmax(half x, half y) {
+                    int xabs = x.data_ & 0x7FFF, yabs = y.data_ & 0x7FFF;
+                    if (xabs > 0x7C00) return y;
+                    if (yabs > 0x7C00) return x;
+                    return (((xabs == x.data_) ? xabs : -xabs) <
+                            ((yabs == y.data_) ? yabs : -yabs))
+                               ? y
+                               : x;
+                  }
+                };
+
+                /// Helper class for half casts.
+                /// This class template has to be specialized for all valid cast
+                /// argument to define an appropriate static `cast` member
+                /// function and a corresponding `type` member denoting its
+                /// return type. \tparam T destination type \tparam U source
+                /// type \tparam R rounding mode to use
+                template <typename T, typename U,
+                          std::float_round_style R =
+                              (std::float_round_style)(HALF_ROUND_STYLE)>
+                struct half_caster {};
+                template <typename U, std::float_round_style R>
+                struct half_caster<half, U, R> {
+#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
+                  static_assert(
+                      std::is_arithmetic<U>::value,
+                      "half_cast from non-arithmetic type unsupported");
+#endif
+
+                  static half cast(U arg) {
+                    return cast_impl(arg, is_float<U>());
+                  };
+
+                 private:
+                  static half cast_impl(U arg, true_type) {
+                    return half(binary, float2half<R>(arg));
+                  }
+                  static half cast_impl(U arg, false_type) {
+                    return half(binary, int2half<R>(arg));
+                  }
+                };
+                template<typename T,std::float_round_style R> struct half_caster<T,half,R>
+		{
+#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
+                  static_assert(std::is_arithmetic<T>::value,
+                                "half_cast to non-arithmetic type unsupported");
+#endif
+
+                  static T cast(half arg) {
+                    return cast_impl(arg, is_float<T>());
+                  }
+
+                 private:
+                  static T cast_impl(half arg, true_type) {
+                    return half2float<T>(arg.data_);
+                  }
+                  static T cast_impl(half arg, false_type) {
+                    return half2int<R, T>(arg.data_);
+                  }
+                };
+                template <typename T, std::float_round_style R>
+                struct half_caster<T, expr, R> {
+#if HALF_ENABLE_CPP11_STATIC_ASSERT && HALF_ENABLE_CPP11_TYPE_TRAITS
+                  static_assert(std::is_arithmetic<T>::value,
+                                "half_cast to non-arithmetic type unsupported");
+#endif
+
+                  static T cast(expr arg) {
+                    return cast_impl(arg, is_float<T>());
+                  }
+
+                 private:
+                  static T cast_impl(float arg, true_type) {
+                    return static_cast<T>(arg);
+                  }
+                  static T cast_impl(half arg, false_type) {
+                    return half2int<R, T>(arg.data_);
+                  }
+                };
+                template <std::float_round_style R>
+                struct half_caster<half, half, R> {
+                  static half cast(half arg) { return arg; }
+                };
+                template <std::float_round_style R>
+                struct half_caster<half, expr, R> : half_caster<half, half, R> {
+                };
+
+                /// \name Comparison operators
+                /// \{
+
+                /// Comparison for equality.
+		/// \param x first operand
+		/// \param y second operand
+		/// \retval true if operands equal
+		/// \retval false else
+		template<typename T,typename U> typename enable<bool,T,U>::type operator==(T x, U y) { return functions::isequal(x, y); }
+
+		/// Comparison for inequality.
+		/// \param x first operand
+		/// \param y second operand
+		/// \retval true if operands not equal
+		/// \retval false else
+		template<typename T,typename U> typename enable<bool,T,U>::type operator!=(T x, U y) { return functions::isnotequal(x, y); }
+
+		/// Comparison for less than.
+		/// \param x first operand
+		/// \param y second operand
+		/// \retval true if \a x less than \a y
+		/// \retval false else
+		template<typename T,typename U> typename enable<bool,T,U>::type operator<(T x, U y) { return functions::isless(x, y); }
+
+		/// Comparison for greater than.
+		/// \param x first operand
+		/// \param y second operand
+		/// \retval true if \a x greater than \a y
+		/// \retval false else
+		template<typename T,typename U> typename enable<bool,T,U>::type operator>(T x, U y) { return functions::isgreater(x, y); }
+
+		/// Comparison for less equal.
+		/// \param x first operand
+		/// \param y second operand
+		/// \retval true if \a x less equal \a y
+		/// \retval false else
+		template<typename T,typename U> typename enable<bool,T,U>::type operator<=(T x, U y) { return functions::islessequal(x, y); }
+
+		/// Comparison for greater equal.
+		/// \param x first operand
+		/// \param y second operand
+		/// \retval true if \a x greater equal \a y
+		/// \retval false else
+		template<typename T,typename U> typename enable<bool,T,U>::type operator>=(T x, U y) { return functions::isgreaterequal(x, y); }
+
+		/// \}
+		/// \name Arithmetic operators
+		/// \{
+
+		/// Add halfs.
+		/// \param x left operand
+		/// \param y right operand
+		/// \return sum of half expressions
+		template<typename T,typename U> typename enable<expr,T,U>::type operator+(T x, U y) { return functions::plus(x, y); }
+
+		/// Subtract halfs.
+		/// \param x left operand
+		/// \param y right operand
+		/// \return difference of half expressions
+		template<typename T,typename U> typename enable<expr,T,U>::type operator-(T x, U y) { return functions::minus(x, y); }
+
+		/// Multiply halfs.
+		/// \param x left operand
+		/// \param y right operand
+		/// \return product of half expressions
+		template<typename T,typename U> typename enable<expr,T,U>::type operator*(T x, U y) { return functions::multiplies(x, y); }
+
+		/// Divide halfs.
+		/// \param x left operand
+		/// \param y right operand
+		/// \return quotient of half expressions
+		template<typename T,typename U> typename enable<expr,T,U>::type operator/(T x, U y) { return functions::divides(x, y); }
+
+		/// Identity.
+		/// \param arg operand
+		/// \return uncahnged operand
+		template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator+(T arg) { return arg; }
+
+		/// Negation.
+		/// \param arg operand
+		/// \return negated operand
+		template<typename T> HALF_CONSTEXPR typename enable<T,T>::type operator-(T arg) { return unary_specialized<T>::negate(arg); }
+
+		/// \}
+		/// \name Input and output
+		/// \{
+
+		/// Output operator.
+		/// \param out output stream to write into
+		/// \param arg half expression to write
+		/// \return reference to output stream
+		template<typename T,typename charT,typename traits> typename enable<std::basic_ostream<charT,traits>&,T>::type
+			operator<<(std::basic_ostream<charT,traits> &out, T arg) { return functions::write(out, arg); }
+
+		/// Input operator.
+		/// \param in input stream to read from
+		/// \param arg half to read into
+		/// \return reference to input stream
+		template<typename charT,typename traits> std::basic_istream<charT,traits>&
+			operator>>(std::basic_istream<charT,traits> &in, half &arg) { return functions::read(in, arg); }
+
+		/// \}
+		/// \name Basic mathematical operations
+		/// \{
+
+		/// Absolute value.
+		/// \param arg operand
+		/// \return absolute value of \a arg
+//		template<typename T> typename enable<T,T>::type abs(T arg) { return unary_specialized<T>::fabs(arg); }
+		inline half abs(half arg) { return unary_specialized<half>::fabs(arg); }
+		inline expr abs(expr arg) { return unary_specialized<expr>::fabs(arg); }
+
+		/// Absolute value.
+		/// \param arg operand
+		/// \return absolute value of \a arg
+//		template<typename T> typename enable<T,T>::type fabs(T arg) { return unary_specialized<T>::fabs(arg); }
+		inline half fabs(half arg) { return unary_specialized<half>::fabs(arg); }
+		inline expr fabs(expr arg) { return unary_specialized<expr>::fabs(arg); }
+
+		/// Remainder of division.
+		/// \param x first operand
+		/// \param y second operand
+		/// \return remainder of floating point division.
+//		template<typename T,typename U> typename enable<expr,T,U>::type fmod(T x, U y) { return functions::fmod(x, y); }
+		inline expr fmod(half x, half y) { return functions::fmod(x, y); }
+		inline expr fmod(half x, expr y) { return functions::fmod(x, y); }
+		inline expr fmod(expr x, half y) { return functions::fmod(x, y); }
+		inline expr fmod(expr x, expr y) { return functions::fmod(x, y); }
+
+                /// Remainder of division.
+                /// \param x first operand
+                /// \param y second operand
+                /// \return remainder of floating point division.
+                //		template<typename T,typename U> typename
+                // enable<expr,T,U>::type remainder(T x, U y) { return
+                // functions::remainder(x, y); }
+                inline expr remainder(half x, half y) {
+                  return functions::remainder(x, y);
+                }
+                inline expr remainder(half x, expr y) {
+                  return functions::remainder(x, y);
+                }
+                inline expr remainder(expr x, half y) {
+                  return functions::remainder(x, y);
+                }
+                inline expr remainder(expr x, expr y) {
+                  return functions::remainder(x, y);
+                }
+
+                /// Remainder of division.
+                /// \param x first operand
+                /// \param y second operand
+                /// \param quo address to store some bits of quotient at
+                /// \return remainder of floating point division.
+                //		template<typename T,typename U> typename
+                // enable<expr,T,U>::type remquo(T x, U y, int *quo) { return
+                // functions::remquo(x, y, quo); }
+                inline expr remquo(half x, half y, int *quo) {
+                  return functions::remquo(x, y, quo);
+                }
+                inline expr remquo(half x, expr y, int *quo) {
+                  return functions::remquo(x, y, quo);
+                }
+                inline expr remquo(expr x, half y, int *quo) {
+                  return functions::remquo(x, y, quo);
+                }
+                inline expr remquo(expr x, expr y, int *quo) {
+                  return functions::remquo(x, y, quo);
+                }
+
+                /// Fused multiply add.
+                /// \param x first operand
+                /// \param y second operand
+                /// \param z third operand
+                /// \return ( \a x * \a y ) + \a z rounded as one operation.
+                //		template<typename T,typename U,typename V>
+                //typename enable<expr,T,U,V>::type fma(T x, U y, V z) { return
+                //functions::fma(x, y, z); }
+                inline expr fma(half x, half y, half z) { return functions::fma(x, y, z); }
+		inline expr fma(half x, half y, expr z) { return functions::fma(x, y, z); }
+		inline expr fma(half x, expr y, half z) { return functions::fma(x, y, z); }
+		inline expr fma(half x, expr y, expr z) { return functions::fma(x, y, z); }
+		inline expr fma(expr x, half y, half z) { return functions::fma(x, y, z); }
+		inline expr fma(expr x, half y, expr z) { return functions::fma(x, y, z); }
+		inline expr fma(expr x, expr y, half z) { return functions::fma(x, y, z); }
+		inline expr fma(expr x, expr y, expr z) { return functions::fma(x, y, z); }
+
+		/// Maximum of half expressions.
+		/// \param x first operand
+		/// \param y second operand
+		/// \return maximum of operands
+//		template<typename T,typename U> typename result<T,U>::type fmax(T x, U y) { return binary_specialized<T,U>::fmax(x, y); }
+		inline half fmax(half x, half y) { return binary_specialized<half,half>::fmax(x, y); }
+		inline expr fmax(half x, expr y) { return binary_specialized<half,expr>::fmax(x, y); }
+		inline expr fmax(expr x, half y) { return binary_specialized<expr,half>::fmax(x, y); }
+		inline expr fmax(expr x, expr y) { return binary_specialized<expr,expr>::fmax(x, y); }
+
+		/// Minimum of half expressions.
+		/// \param x first operand
+		/// \param y second operand
+		/// \return minimum of operands
+//		template<typename T,typename U> typename result<T,U>::type fmin(T x, U y) { return binary_specialized<T,U>::fmin(x, y); }
+		inline half fmin(half x, half y) { return binary_specialized<half,half>::fmin(x, y); }
+		inline expr fmin(half x, expr y) { return binary_specialized<half,expr>::fmin(x, y); }
+		inline expr fmin(expr x, half y) { return binary_specialized<expr,half>::fmin(x, y); }
+		inline expr fmin(expr x, expr y) { return binary_specialized<expr,expr>::fmin(x, y); }
+
+		/// Positive difference.
+		/// \param x first operand
+		/// \param y second operand
+		/// \return \a x - \a y or 0 if difference negative
+//		template<typename T,typename U> typename enable<expr,T,U>::type fdim(T x, U y) { return functions::fdim(x, y); }
+		inline expr fdim(half x, half y) { return functions::fdim(x, y); }
+		inline expr fdim(half x, expr y) { return functions::fdim(x, y); }
+		inline expr fdim(expr x, half y) { return functions::fdim(x, y); }
+		inline expr fdim(expr x, expr y) { return functions::fdim(x, y); }
+
+		/// Get NaN value.
+		/// \return quiet NaN
+                inline half nanh(const char *) { return functions::nanh(); }
+
+                /// \}
+                /// \name Exponential functions
+                /// \{
+
+                /// Exponential function.
+		/// \param arg function argument
+		/// \return e raised to \a arg
+//		template<typename T> typename enable<expr,T>::type exp(T arg) { return functions::exp(arg); }
+		inline expr exp(half arg) { return functions::exp(arg); }
+		inline expr exp(expr arg) { return functions::exp(arg); }
+
+		/// Exponential minus one.
+		/// \param arg function argument
+		/// \return e raised to \a arg subtracted by 1
+//		template<typename T> typename enable<expr,T>::type expm1(T arg) { return functions::expm1(arg); }
+		inline expr expm1(half arg) { return functions::expm1(arg); }
+		inline expr expm1(expr arg) { return functions::expm1(arg); }
+
+		/// Binary exponential.
+		/// \param arg function argument
+		/// \return 2 raised to \a arg
+//		template<typename T> typename enable<expr,T>::type exp2(T arg) { return functions::exp2(arg); }
+		inline expr exp2(half arg) { return functions::exp2(arg); }
+		inline expr exp2(expr arg) { return functions::exp2(arg); }
+
+		/// Natural logorithm.
+		/// \param arg function argument
+		/// \return logarithm of \a arg to base e
+//		template<typename T> typename enable<expr,T>::type log(T arg) { return functions::log(arg); }
+		inline expr log(half arg) { return functions::log(arg); }
+		inline expr log(expr arg) { return functions::log(arg); }
+
+		/// Common logorithm.
+		/// \param arg function argument
+		/// \return logarithm of \a arg to base 10
+//		template<typename T> typename enable<expr,T>::type log10(T arg) { return functions::log10(arg); }
+		inline expr log10(half arg) { return functions::log10(arg); }
+		inline expr log10(expr arg) { return functions::log10(arg); }
+
+		/// Natural logorithm.
+		/// \param arg function argument
+		/// \return logarithm of \a arg plus 1 to base e
+//		template<typename T> typename enable<expr,T>::type log1p(T arg) { return functions::log1p(arg); }
+		inline expr log1p(half arg) { return functions::log1p(arg); }
+		inline expr log1p(expr arg) { return functions::log1p(arg); }
+
+		/// Binary logorithm.
+		/// \param arg function argument
+		/// \return logarithm of \a arg to base 2
+//		template<typename T> typename enable<expr,T>::type log2(T arg) { return functions::log2(arg); }
+		inline expr log2(half arg) { return functions::log2(arg); }
+		inline expr log2(expr arg) { return functions::log2(arg); }
+
+		/// \}
+		/// \name Power functions
+		/// \{
+
+		/// Square root.
+		/// \param arg function argument
+		/// \return square root of \a arg
+//		template<typename T> typename enable<expr,T>::type sqrt(T arg) { return functions::sqrt(arg); }
+		inline expr sqrt(half arg) { return functions::sqrt(arg); }
+		inline expr sqrt(expr arg) { return functions::sqrt(arg); }
+
+                /// Cubic root.
+                /// \param arg function argument
+                /// \return cubic root of \a arg
+                //		template<typename T> typename
+                //enable<expr,T>::type cbrt(T arg) { return
+                // functions::cbrt(arg); }
+                inline expr cbrt(half arg) { return functions::cbrt(arg); }
+                inline expr cbrt(expr arg) { return functions::cbrt(arg); }
+
+                /// Hypotenuse function.
+                /// \param x first argument
+                /// \param y second argument
+                /// \return square root of sum of squares without internal over-
+                /// or underflows
+                //		template<typename T,typename U> typename
+                //enable<expr,T,U>::type hypot(T x, U y) { return
+                //functions::hypot(x, y); }
+                inline expr hypot(half x, half y) { return functions::hypot(x, y); }
+		inline expr hypot(half x, expr y) { return functions::hypot(x, y); }
+		inline expr hypot(expr x, half y) { return functions::hypot(x, y); }
+		inline expr hypot(expr x, expr y) { return functions::hypot(x, y); }
+
+		/// Power function.
+		/// \param base first argument
+		/// \param exp second argument
+		/// \return \a base raised to \a exp
+//		template<typename T,typename U> typename enable<expr,T,U>::type pow(T base, U exp) { return functions::pow(base, exp); }
+		inline expr pow(half base, half exp) { return functions::pow(base, exp); }
+		inline expr pow(half base, expr exp) { return functions::pow(base, exp); }
+		inline expr pow(expr base, half exp) { return functions::pow(base, exp); }
+		inline expr pow(expr base, expr exp) { return functions::pow(base, exp); }
+
+		/// \}
+		/// \name Trigonometric functions
+		/// \{
+
+		/// Sine function.
+		/// \param arg function argument
+		/// \return sine value of \a arg
+//		template<typename T> typename enable<expr,T>::type sin(T arg) { return functions::sin(arg); }
+		inline expr sin(half arg) { return functions::sin(arg); }
+		inline expr sin(expr arg) { return functions::sin(arg); }
+
+		/// Cosine function.
+		/// \param arg function argument
+		/// \return cosine value of \a arg
+//		template<typename T> typename enable<expr,T>::type cos(T arg) { return functions::cos(arg); }
+		inline expr cos(half arg) { return functions::cos(arg); }
+		inline expr cos(expr arg) { return functions::cos(arg); }
+
+		/// Tangent function.
+		/// \param arg function argument
+		/// \return tangent value of \a arg
+//		template<typename T> typename enable<expr,T>::type tan(T arg) { return functions::tan(arg); }
+		inline expr tan(half arg) { return functions::tan(arg); }
+		inline expr tan(expr arg) { return functions::tan(arg); }
+
+		/// Arc sine.
+		/// \param arg function argument
+		/// \return arc sine value of \a arg
+//		template<typename T> typename enable<expr,T>::type asin(T arg) { return functions::asin(arg); }
+		inline expr asin(half arg) { return functions::asin(arg); }
+		inline expr asin(expr arg) { return functions::asin(arg); }
+
+		/// Arc cosine function.
+		/// \param arg function argument
+		/// \return arc cosine value of \a arg
+//		template<typename T> typename enable<expr,T>::type acos(T arg) { return functions::acos(arg); }
+		inline expr acos(half arg) { return functions::acos(arg); }
+		inline expr acos(expr arg) { return functions::acos(arg); }
+
+		/// Arc tangent function.
+		/// \param arg function argument
+		/// \return arc tangent value of \a arg
+//		template<typename T> typename enable<expr,T>::type atan(T arg) { return functions::atan(arg); }
+		inline expr atan(half arg) { return functions::atan(arg); }
+		inline expr atan(expr arg) { return functions::atan(arg); }
+
+		/// Arc tangent function.
+		/// \param x first argument
+		/// \param y second argument
+		/// \return arc tangent value
+//		template<typename T,typename U> typename enable<expr,T,U>::type atan2(T x, U y) { return functions::atan2(x, y); }
+		inline expr atan2(half x, half y) { return functions::atan2(x, y); }
+		inline expr atan2(half x, expr y) { return functions::atan2(x, y); }
+		inline expr atan2(expr x, half y) { return functions::atan2(x, y); }
+		inline expr atan2(expr x, expr y) { return functions::atan2(x, y); }
+
+		/// \}
+		/// \name Hyperbolic functions
+		/// \{
+
+		/// Hyperbolic sine.
+		/// \param arg function argument
+		/// \return hyperbolic sine value of \a arg
+//		template<typename T> typename enable<expr,T>::type sinh(T arg) { return functions::sinh(arg); }
+		inline expr sinh(half arg) { return functions::sinh(arg); }
+		inline expr sinh(expr arg) { return functions::sinh(arg); }
+
+		/// Hyperbolic cosine.
+		/// \param arg function argument
+		/// \return hyperbolic cosine value of \a arg
+//		template<typename T> typename enable<expr,T>::type cosh(T arg) { return functions::cosh(arg); }
+		inline expr cosh(half arg) { return functions::cosh(arg); }
+		inline expr cosh(expr arg) { return functions::cosh(arg); }
+
+		/// Hyperbolic tangent.
+		/// \param arg function argument
+		/// \return hyperbolic tangent value of \a arg
+//		template<typename T> typename enable<expr,T>::type tanh(T arg) { return functions::tanh(arg); }
+		inline expr tanh(half arg) { return functions::tanh(arg); }
+		inline expr tanh(expr arg) { return functions::tanh(arg); }
+
+		/// Hyperbolic area sine.
+		/// \param arg function argument
+		/// \return area sine value of \a arg
+//		template<typename T> typename enable<expr,T>::type asinh(T arg) { return functions::asinh(arg); }
+		inline expr asinh(half arg) { return functions::asinh(arg); }
+		inline expr asinh(expr arg) { return functions::asinh(arg); }
+
+		/// Hyperbolic area cosine.
+		/// \param arg function argument
+		/// \return area cosine value of \a arg
+//		template<typename T> typename enable<expr,T>::type acosh(T arg) { return functions::acosh(arg); }
+		inline expr acosh(half arg) { return functions::acosh(arg); }
+		inline expr acosh(expr arg) { return functions::acosh(arg); }
+
+		/// Hyperbolic area tangent.
+		/// \param arg function argument
+		/// \return area tangent value of \a arg
+//		template<typename T> typename enable<expr,T>::type atanh(T arg) { return functions::atanh(arg); }
+		inline expr atanh(half arg) { return functions::atanh(arg); }
+		inline expr atanh(expr arg) { return functions::atanh(arg); }
+
+                /// \}
+                /// \name Error and gamma functions
+                /// \{
+
+                /// Error function.
+		/// \param arg function argument
+		/// \return error function value of \a arg
+//		template<typename T> typename enable<expr,T>::type erf(T arg) { return functions::erf(arg); }
+		inline expr erf(half arg) { return functions::erf(arg); }
+		inline expr erf(expr arg) { return functions::erf(arg); }
+
+		/// Complementary error function.
+		/// \param arg function argument
+		/// \return 1 minus error function value of \a arg
+//		template<typename T> typename enable<expr,T>::type erfc(T arg) { return functions::erfc(arg); }
+		inline expr erfc(half arg) { return functions::erfc(arg); }
+		inline expr erfc(expr arg) { return functions::erfc(arg); }
+
+		/// Natural logarithm of gamma function.
+		/// \param arg function argument
+		/// \return natural logarith of gamma function for \a arg
+//		template<typename T> typename enable<expr,T>::type lgamma(T arg) { return functions::lgamma(arg); }
+		inline expr lgamma(half arg) { return functions::lgamma(arg); }
+		inline expr lgamma(expr arg) { return functions::lgamma(arg); }
+
+		/// Gamma function.
+		/// \param arg function argument
+		/// \return gamma function value of \a arg
+//		template<typename T> typename enable<expr,T>::type tgamma(T arg) { return functions::tgamma(arg); }
+		inline expr tgamma(half arg) { return functions::tgamma(arg); }
+		inline expr tgamma(expr arg) { return functions::tgamma(arg); }
+
+                /// \}
+                /// \name Rounding
+                /// \{
+
+                /// Nearest integer not less than half value.
+		/// \param arg half to round
+		/// \return nearest integer not less than \a arg
+//		template<typename T> typename enable<half,T>::type ceil(T arg) { return functions::ceil(arg); }
+		inline half ceil(half arg) { return functions::ceil(arg); }
+		inline half ceil(expr arg) { return functions::ceil(arg); }
+
+		/// Nearest integer not greater than half value.
+		/// \param arg half to round
+		/// \return nearest integer not greater than \a arg
+//		template<typename T> typename enable<half,T>::type floor(T arg) { return functions::floor(arg); }
+		inline half floor(half arg) { return functions::floor(arg); }
+		inline half floor(expr arg) { return functions::floor(arg); }
+
+		/// Nearest integer not greater in magnitude than half value.
+		/// \param arg half to round
+		/// \return nearest integer not greater in magnitude than \a arg
+//		template<typename T> typename enable<half,T>::type trunc(T arg) { return functions::trunc(arg); }
+		inline half trunc(half arg) { return functions::trunc(arg); }
+		inline half trunc(expr arg) { return functions::trunc(arg); }
+
+		/// Nearest integer.
+		/// \param arg half to round
+		/// \return nearest integer, rounded away from zero in half-way cases
+//		template<typename T> typename enable<half,T>::type round(T arg) { return functions::round(arg); }
+		inline half round(half arg) { return functions::round(arg); }
+		inline half round(expr arg) { return functions::round(arg); }
+
+		/// Nearest integer.
+		/// \param arg half to round
+		/// \return nearest integer, rounded away from zero in half-way cases
+//		template<typename T> typename enable<long,T>::type lround(T arg) { return functions::lround(arg); }
+		inline long lround(half arg) { return functions::lround(arg); }
+		inline long lround(expr arg) { return functions::lround(arg); }
+
+                /// Nearest integer using half's internal rounding mode.
+                /// \param arg half expression to round
+                /// \return nearest integer using default rounding mode
+                //		template<typename T> typename
+                //enable<half,T>::type nearbyint(T arg) { return
+                // functions::nearbyint(arg); }
+                inline half nearbyint(half arg) { return functions::rint(arg); }
+                inline half nearbyint(expr arg) { return functions::rint(arg); }
+
+                /// Nearest integer using half's internal rounding mode.
+                /// \param arg half expression to round
+                /// \return nearest integer using default rounding mode
+                //		template<typename T> typename
+                //enable<half,T>::type rint(T arg) { return
+                // functions::rint(arg); }
+                inline half rint(half arg) { return functions::rint(arg); }
+                inline half rint(expr arg) { return functions::rint(arg); }
+
+                /// Nearest integer using half's internal rounding mode.
+                /// \param arg half expression to round
+                /// \return nearest integer using default rounding mode
+                //		template<typename T> typename
+                //enable<long,T>::type lrint(T arg) { return
+                // functions::lrint(arg); }
+                inline long lrint(half arg) { return functions::lrint(arg); }
+                inline long lrint(expr arg) { return functions::lrint(arg); }
+	#if HALF_ENABLE_CPP11_LONG_LONG
+		/// Nearest integer.
+		/// \param arg half to round
+		/// \return nearest integer, rounded away from zero in half-way cases
+//		template<typename T> typename enable<long long,T>::type llround(T arg) { return functions::llround(arg); }
+		inline long long llround(half arg) { return functions::llround(arg); }
+		inline long long llround(expr arg) { return functions::llround(arg); }
+
+                /// Nearest integer using half's internal rounding mode.
+                /// \param arg half expression to round
+                /// \return nearest integer using default rounding mode
+                //		template<typename T> typename enable<long
+                // long,T>::type llrint(T arg) { return functions::llrint(arg);
+                // }
+                inline long long llrint(half arg) {
+                  return functions::llrint(arg);
+                }
+                inline long long llrint(expr arg) {
+                  return functions::llrint(arg);
+                }
+#endif
+
+                /// \}
+		/// \name Floating point manipulation
+		/// \{
+
+		/// Decompress floating point number.
+		/// \param arg number to decompress
+		/// \param exp address to store exponent at
+		/// \return significant in range [0.5, 1)
+//		template<typename T> typename enable<half,T>::type frexp(T arg, int *exp) { return functions::frexp(arg, exp); }
+		inline half frexp(half arg, int *exp) { return functions::frexp(arg, exp); }
+		inline half frexp(expr arg, int *exp) { return functions::frexp(arg, exp); }
+
+		/// Multiply by power of two.
+		/// \param arg number to modify
+		/// \param exp power of two to multiply with
+		/// \return \a arg multplied by 2 raised to \a exp
+//		template<typename T> typename enable<half,T>::type ldexp(T arg, int exp) { return functions::scalbln(arg, exp); }
+		inline half ldexp(half arg, int exp) { return functions::scalbln(arg, exp); }
+		inline half ldexp(expr arg, int exp) { return functions::scalbln(arg, exp); }
+
+		/// Extract integer and fractional parts.
+		/// \param arg number to decompress
+		/// \param iptr address to store integer part at
+		/// \return fractional part
+//		template<typename T> typename enable<half,T>::type modf(T arg, half *iptr) { return functions::modf(arg, iptr); }
+		inline half modf(half arg, half *iptr) { return functions::modf(arg, iptr); }
+		inline half modf(expr arg, half *iptr) { return functions::modf(arg, iptr); }
+
+		/// Multiply by power of two.
+		/// \param arg number to modify
+		/// \param exp power of two to multiply with
+		/// \return \a arg multplied by 2 raised to \a exp
+//		template<typename T> typename enable<half,T>::type scalbn(T arg, int exp) { return functions::scalbln(arg, exp); }
+		inline half scalbn(half arg, int exp) { return functions::scalbln(arg, exp); }
+		inline half scalbn(expr arg, int exp) { return functions::scalbln(arg, exp); }
+
+                /// Multiply by power of two.
+                /// \param arg number to modify
+                /// \param exp power of two to multiply with
+                /// \return \a arg multplied by 2 raised to \a exp
+                //		template<typename T> typename
+                //enable<half,T>::type scalbln(T arg, long exp) { return
+                // functions::scalbln(arg, exp); }
+                inline half scalbln(half arg, long exp) {
+                  return functions::scalbln(arg, exp);
+                }
+                inline half scalbln(expr arg, long exp) { return functions::scalbln(arg, exp); }
+
+		/// Extract exponent.
+		/// \param arg number to query
+		/// \return floating point exponent
+		/// \retval FP_ILOGB0 for zero
+		/// \retval FP_ILOGBNAN for NaN
+		/// \retval MAX_INT for infinity
+//		template<typename T> typename enable<int,T>::type ilogb(T arg) { return functions::ilogb(arg); }
+		inline int ilogb(half arg) { return functions::ilogb(arg); }
+		inline int ilogb(expr arg) { return functions::ilogb(arg); }
+
+		/// Extract exponent.
+		/// \param arg number to query
+		/// \return floating point exponent
+//		template<typename T> typename enable<half,T>::type logb(T arg) { return functions::logb(arg); }
+		inline half logb(half arg) { return functions::logb(arg); }
+		inline half logb(expr arg) { return functions::logb(arg); }
+
+		/// Next representable value.
+		/// \param from value to compute next representable value for
+		/// \param to direction towards which to compute next value
+		/// \return next representable value after \a from in direction towards \a to
+//		template<typename T,typename U> typename enable<half,T,U>::type nextafter(T from, U to) { return functions::nextafter(from, to); }
+		inline half nextafter(half from, half to) { return functions::nextafter(from, to); }
+		inline half nextafter(half from, expr to) { return functions::nextafter(from, to); }
+		inline half nextafter(expr from, half to) { return functions::nextafter(from, to); }
+		inline half nextafter(expr from, expr to) { return functions::nextafter(from, to); }
+
+		/// Next representable value.
+		/// \param from value to compute next representable value for
+		/// \param to direction towards which to compute next value
+		/// \return next representable value after \a from in direction towards \a to
+//		template<typename T> typename enable<half,T>::type nexttoward(T from, long double to) { return functions::nexttoward(from, to); }
+		inline half nexttoward(half from, long double to) { return functions::nexttoward(from, to); }
+		inline half nexttoward(expr from, long double to) { return functions::nexttoward(from, to); }
+
+		/// Take sign.
+		/// \param x value to change sign for
+		/// \param y value to take sign from
+		/// \return value equal to \a x in magnitude and to \a y in sign
+//		template<typename T,typename U> typename enable<half,T,U>::type copysign(T x, U y) { return functions::copysign(x, y); }
+		inline half copysign(half x, half y) { return functions::copysign(x, y); }
+		inline half copysign(half x, expr y) { return functions::copysign(x, y); }
+		inline half copysign(expr x, half y) { return functions::copysign(x, y); }
+		inline half copysign(expr x, expr y) { return functions::copysign(x, y); }
+
+		/// \}
+		/// \name Floating point classification
+		/// \{
+
+                /// Classify floating point value.
+                /// \param arg number to classify
+                /// \retval FP_ZERO for positive and negative zero
+                /// \retval FP_SUBNORMAL for subnormal numbers
+                /// \retval FP_INFINITY for positive and negative infinity
+                /// \retval FP_NAN for NaNs
+                /// \retval FP_NORMAL for all other (normal) values
+                //		template<typename T> typename
+                //enable<int,T>::type fpclassify(T arg) { return
+                // functions::fpclassify(arg); }
+                inline int fpclassify(half arg) {
+                  return functions::fpclassify(arg);
+                }
+                inline int fpclassify(expr arg) {
+                  return functions::fpclassify(arg);
+                }
+
+                /// Check if finite number.
+                /// \param arg number to check
+                /// \retval true if neither infinity nor NaN
+                /// \retval false else
+                //		template<typename T> typename
+                //enable<bool,T>::type isfinite(T arg) { return
+                // functions::isfinite(arg); }
+                inline bool isfinite(half arg) {
+                  return functions::isfinite(arg);
+                }
+                inline bool isfinite(expr arg) {
+                  return functions::isfinite(arg);
+                }
+
+                /// Check for infinity.
+                /// \param arg number to check
+                /// \retval true for positive or negative infinity
+                /// \retval false else
+                //		template<typename T> typename
+                //enable<bool,T>::type isinf(T arg) { return
+                // functions::isinf(arg); }
+                inline bool isinf(half arg) { return functions::isinf(arg); }
+                inline bool isinf(expr arg) { return functions::isinf(arg); }
+
+                /// Check for NaN.
+                /// \param arg number to check
+                /// \retval true for NaNs
+                /// \retval false else
+                //		template<typename T> typename
+                //enable<bool,T>::type isnan(T arg) { return
+                // functions::isnan(arg); }
+                inline bool isnan(half arg) { return functions::isnan(arg); }
+                inline bool isnan(expr arg) { return functions::isnan(arg); }
+
+                /// Check if normal number.
+                /// \param arg number to check
+                /// \retval true if normal number
+                /// \retval false if either subnormal, zero, infinity or NaN
+                //		template<typename T> typename
+                //enable<bool,T>::type isnormal(T arg) { return
+                // functions::isnormal(arg); }
+                inline bool isnormal(half arg) {
+                  return functions::isnormal(arg);
+                }
+                inline bool isnormal(expr arg) {
+                  return functions::isnormal(arg);
+                }
+
+                /// Check sign.
+                /// \param arg number to check
+                /// \retval true for negative number
+                /// \retval false for positive number
+                //		template<typename T> typename
+                //enable<bool,T>::type signbit(T arg) { return
+                // functions::signbit(arg); }
+                inline bool signbit(half arg) {
+                  return functions::signbit(arg);
+                }
+                inline bool signbit(expr arg) {
+                  return functions::signbit(arg);
+                }
+
+                /// \}
+                /// \name Comparison
+                /// \{
+
+                /// Comparison for greater than.
+                /// \param x first operand
+                /// \param y second operand
+                /// \retval true if \a x greater than \a y
+                /// \retval false else
+                //		template<typename T,typename U> typename
+                // enable<bool,T,U>::type isgreater(T x, U y) { return
+                // functions::isgreater(x, y); }
+                inline bool isgreater(half x, half y) {
+                  return functions::isgreater(x, y);
+                }
+                inline bool isgreater(half x, expr y) {
+                  return functions::isgreater(x, y);
+                }
+                inline bool isgreater(expr x, half y) {
+                  return functions::isgreater(x, y);
+                }
+                inline bool isgreater(expr x, expr y) {
+                  return functions::isgreater(x, y);
+                }
+
+                /// Comparison for greater equal.
+                /// \param x first operand
+                /// \param y second operand
+                /// \retval true if \a x greater equal \a y
+                /// \retval false else
+                //		template<typename T,typename U> typename
+                // enable<bool,T,U>::type isgreaterequal(T x, U y) { return
+                // functions::isgreaterequal(x, y); }
+                inline bool isgreaterequal(half x, half y) {
+                  return functions::isgreaterequal(x, y);
+                }
+                inline bool isgreaterequal(half x, expr y) {
+                  return functions::isgreaterequal(x, y);
+                }
+                inline bool isgreaterequal(expr x, half y) {
+                  return functions::isgreaterequal(x, y);
+                }
+                inline bool isgreaterequal(expr x, expr y) {
+                  return functions::isgreaterequal(x, y);
+                }
+
+                /// Comparison for less than.
+                /// \param x first operand
+                /// \param y second operand
+                /// \retval true if \a x less than \a y
+                /// \retval false else
+                //		template<typename T,typename U> typename
+                // enable<bool,T,U>::type isless(T x, U y) { return
+                // functions::isless(x, y); }
+                inline bool isless(half x, half y) {
+                  return functions::isless(x, y);
+                }
+                inline bool isless(half x, expr y) {
+                  return functions::isless(x, y);
+                }
+                inline bool isless(expr x, half y) {
+                  return functions::isless(x, y);
+                }
+                inline bool isless(expr x, expr y) {
+                  return functions::isless(x, y);
+                }
+
+                /// Comparison for less equal.
+                /// \param x first operand
+                /// \param y second operand
+                /// \retval true if \a x less equal \a y
+                /// \retval false else
+                //		template<typename T,typename U> typename
+                // enable<bool,T,U>::type islessequal(T x, U y) { return
+                // functions::islessequal(x, y); }
+                inline bool islessequal(half x, half y) {
+                  return functions::islessequal(x, y);
+                }
+                inline bool islessequal(half x, expr y) {
+                  return functions::islessequal(x, y);
+                }
+                inline bool islessequal(expr x, half y) {
+                  return functions::islessequal(x, y);
+                }
+                inline bool islessequal(expr x, expr y) {
+                  return functions::islessequal(x, y);
+                }
+
+                /// Comarison for less or greater.
+                /// \param x first operand
+                /// \param y second operand
+                /// \retval true if either less or greater
+                /// \retval false else
+                //		template<typename T,typename U> typename
+                // enable<bool,T,U>::type islessgreater(T x, U y) { return
+                // functions::islessgreater(x, y); }
+                inline bool islessgreater(half x, half y) {
+                  return functions::islessgreater(x, y);
+                }
+                inline bool islessgreater(half x, expr y) {
+                  return functions::islessgreater(x, y);
+                }
+                inline bool islessgreater(expr x, half y) {
+                  return functions::islessgreater(x, y);
+                }
+                inline bool islessgreater(expr x, expr y) {
+                  return functions::islessgreater(x, y);
+                }
+
+                /// Check if unordered.
+                /// \param x first operand
+                /// \param y second operand
+                /// \retval true if unordered (one or two NaN operands)
+                /// \retval false else
+                //		template<typename T,typename U> typename
+                // enable<bool,T,U>::type isunordered(T x, U y) { return
+                // functions::isunordered(x, y); }
+                inline bool isunordered(half x, half y) {
+                  return functions::isunordered(x, y);
+                }
+                inline bool isunordered(half x, expr y) {
+                  return functions::isunordered(x, y);
+                }
+                inline bool isunordered(expr x, half y) {
+                  return functions::isunordered(x, y);
+                }
+                inline bool isunordered(expr x, expr y) {
+                  return functions::isunordered(x, y);
+                }
+
+                /// \name Casting
+                /// \{
+
+                /// Cast to or from half-precision floating point number.
+                /// This casts between [half](\ref half_float::half) and any
+                /// built-in arithmetic type. The values are converted directly
+                /// using the given rounding mode, without any roundtrip over
+                /// `float` that a `static_cast` would otherwise do. It uses the
+                /// default rounding mode.
+                ///
+                /// Using this cast with neither of the two types being a
+                /// [half](\ref half_float::half) or with any of the two types
+                /// not being a built-in arithmetic type (apart from [half](\ref
+                /// half_float::half), of course) results in a compiler error
+                /// and casting between [half](\ref half_float::half)s is just a
+                /// no-op. \tparam T destination type (half or built-in
+                /// arithmetic type) \tparam U source type (half or built-in
+                /// arithmetic type) \param arg value to cast \return \a arg
+                /// converted to destination type
+                template <typename T, typename U>
+                T half_cast(U arg) {
+                  return half_caster<T, U>::cast(arg);
+                }
+
+                /// Cast to or from half-precision floating point number.
+                /// This casts between [half](\ref half_float::half) and any
+                /// built-in arithmetic type. The values are converted directly
+                /// using the given rounding mode, without any roundtrip over
+                /// `float` that a `static_cast` would otherwise do.
+                ///
+                /// Using this cast with neither of the two types being a
+                /// [half](\ref half_float::half) or with any of the two types
+                /// not being a built-in arithmetic type (apart from [half](\ref
+                /// half_float::half), of course) results in a compiler error
+                /// and casting between [half](\ref half_float::half)s is just a
+                /// no-op. \tparam T destination type (half or built-in
+                /// arithmetic type) \tparam R rounding mode to use. \tparam U
+                /// source type (half or built-in arithmetic type) \param arg
+                /// value to cast \return \a arg converted to destination type
+                template <typename T, std::float_round_style R, typename U>
+                T half_cast(U arg) {
+                  return half_caster<T, U, R>::cast(arg);
+                }
+                /// \}
+        }
+
+	using detail::operator==;
+	using detail::operator!=;
+	using detail::operator<;
+	using detail::operator>;
+	using detail::operator<=;
+	using detail::operator>=;
+	using detail::operator+;
+	using detail::operator-;
+	using detail::operator*;
+	using detail::operator/;
+	using detail::operator<<;
+	using detail::operator>>;
+
+	using detail::abs;
+        using detail::acos;
+        using detail::acosh;
+        using detail::asin;
+        using detail::asinh;
+        using detail::atan;
+        using detail::atan2;
+        using detail::atanh;
+        using detail::cbrt;
+        using detail::ceil;
+        using detail::cos;
+        using detail::cosh;
+        using detail::erf;
+        using detail::erfc;
+        using detail::exp;
+        using detail::exp2;
+        using detail::expm1;
+        using detail::fabs;
+        using detail::fdim;
+        using detail::floor;
+        using detail::fma;
+        using detail::fmax;
+        using detail::fmin;
+        using detail::fmod;
+        using detail::hypot;
+        using detail::lgamma;
+        using detail::log;
+        using detail::log10;
+        using detail::log1p;
+        using detail::log2;
+        using detail::lrint;
+        using detail::lround;
+        using detail::nanh;
+        using detail::nearbyint;
+        using detail::pow;
+        using detail::remainder;
+        using detail::remquo;
+        using detail::rint;
+        using detail::round;
+        using detail::sin;
+        using detail::sinh;
+        using detail::sqrt;
+        using detail::tan;
+        using detail::tanh;
+        using detail::tgamma;
+        using detail::trunc;
+#if HALF_ENABLE_CPP11_LONG_LONG
+        using detail::llrint;
+        using detail::llround;
+#endif
+	using detail::frexp;
+	using detail::ldexp;
+	using detail::modf;
+	using detail::scalbn;
+	using detail::scalbln;
+	using detail::ilogb;
+	using detail::logb;
+	using detail::nextafter;
+	using detail::nexttoward;
+	using detail::copysign;
+	using detail::fpclassify;
+	using detail::isfinite;
+	using detail::isinf;
+	using detail::isnan;
+	using detail::isnormal;
+	using detail::signbit;
+	using detail::isgreater;
+	using detail::isgreaterequal;
+	using detail::isless;
+	using detail::islessequal;
+	using detail::islessgreater;
+	using detail::isunordered;
+
+	using detail::half_cast;
+}
+
+
+/// Extensions to the C++ standard library.
+namespace std
+{
+/// Numeric limits for half-precision floats.
+/// Because of the underlying single-precision implementation of many
+/// operations, it inherits some properties from `std::numeric_limits<float>`.
+template <>
+class numeric_limits<half_float::half> : public numeric_limits<float> {
+ public:
+  /// Supports signed values.
+  static HALF_CONSTEXPR_CONST bool is_signed = true;
+
+  /// Is not exact.
+  static HALF_CONSTEXPR_CONST bool is_exact = false;
+
+  /// Doesn't provide modulo arithmetic.
+  static HALF_CONSTEXPR_CONST bool is_modulo = false;
+
+  /// IEEE conformant.
+  static HALF_CONSTEXPR_CONST bool is_iec559 = true;
+
+  /// Supports infinity.
+  static HALF_CONSTEXPR_CONST bool has_infinity = true;
+
+  /// Supports quiet NaNs.
+  static HALF_CONSTEXPR_CONST bool has_quiet_NaN = true;
+
+  /// Supports subnormal values.
+  static HALF_CONSTEXPR_CONST float_denorm_style has_denorm = denorm_present;
+
+  /// Rounding mode.
+  /// Due to the mix of internal single-precision computations (using the
+  /// rounding mode of the underlying single-precision implementation) with the
+  /// rounding mode of the single-to-half conversions, the actual rounding mode
+  /// might be `std::round_indeterminate` if the default half-precision rounding
+  /// mode doesn't match the single-precision rounding mode.
+  static HALF_CONSTEXPR_CONST float_round_style round_style =
+      (std::numeric_limits<float>::round_style == half_float::half::round_style)
+          ? half_float::half::round_style
+          : round_indeterminate;
+
+  /// Significant digits.
+  static HALF_CONSTEXPR_CONST int digits = 11;
+
+  /// Significant decimal digits.
+  static HALF_CONSTEXPR_CONST int digits10 = 3;
+
+  /// Required decimal digits to represent all possible values.
+  static HALF_CONSTEXPR_CONST int max_digits10 = 5;
+
+  /// Number base.
+  static HALF_CONSTEXPR_CONST int radix = 2;
+
+  /// One more than smallest exponent.
+  static HALF_CONSTEXPR_CONST int min_exponent = -13;
+
+  /// Smallest normalized representable power of 10.
+  static HALF_CONSTEXPR_CONST int min_exponent10 = -4;
+
+  /// One more than largest exponent
+  static HALF_CONSTEXPR_CONST int max_exponent = 16;
+
+  /// Largest finitely representable power of 10.
+  static HALF_CONSTEXPR_CONST int max_exponent10 = 4;
+
+  /// Smallest positive normal value.
+  static HALF_CONSTEXPR half_float::half min() HALF_NOTHROW {
+    return half_float::half(half_float::detail::binary, 0x0400);
+  }
+
+  /// Smallest finite value.
+  static HALF_CONSTEXPR half_float::half lowest() HALF_NOTHROW {
+    return half_float::half(half_float::detail::binary, 0xFBFF);
+  }
+
+  /// Largest finite value.
+  static HALF_CONSTEXPR half_float::half max() HALF_NOTHROW {
+    return half_float::half(half_float::detail::binary, 0x7BFF);
+  }
+
+  /// Difference between one and next representable value.
+  static HALF_CONSTEXPR half_float::half epsilon() HALF_NOTHROW {
+    return half_float::half(half_float::detail::binary, 0x1400);
+  }
+
+  /// Maximum rounding error.
+  static HALF_CONSTEXPR half_float::half round_error() HALF_NOTHROW {
+    return half_float::half(
+        half_float::detail::binary,
+        (round_style == std::round_to_nearest) ? 0x3800 : 0x3C00);
+  }
+
+  /// Positive infinity.
+  static HALF_CONSTEXPR half_float::half infinity() HALF_NOTHROW {
+    return half_float::half(half_float::detail::binary, 0x7C00);
+  }
+
+  /// Quiet NaN.
+  static HALF_CONSTEXPR half_float::half quiet_NaN() HALF_NOTHROW {
+    return half_float::half(half_float::detail::binary, 0x7FFF);
+  }
+
+  /// Signalling NaN.
+  static HALF_CONSTEXPR half_float::half signaling_NaN() HALF_NOTHROW {
+    return half_float::half(half_float::detail::binary, 0x7DFF);
+  }
+
+  /// Smallest positive subnormal value.
+  static HALF_CONSTEXPR half_float::half denorm_min() HALF_NOTHROW {
+    return half_float::half(half_float::detail::binary, 0x0001);
+  }
+};
+
+#if HALF_ENABLE_CPP11_HASH
+	/// Hash function for half-precision floats.
+	/// This is only defined if C++11 `std::hash` is supported and enabled.
+	template<> struct hash<half_float::half> //: unary_function<half_float::half,size_t>
+	{
+		/// Type of function argument.
+		typedef half_float::half argument_type;
+
+		/// Function return type.
+		typedef size_t result_type;
+
+		/// Compute hash function.
+		/// \param arg half to hash
+		/// \return hash value
+                result_type operator()(argument_type arg) const {
+                  return hash<half_float::detail::uint16>()(
+                      static_cast<unsigned>(arg.data_) &
+                      -(arg.data_ != 0x8000));
+                }
+        };
+#endif
+}
+
+
+#undef HALF_CONSTEXPR
+#undef HALF_CONSTEXPR_CONST
+#undef HALF_NOEXCEPT
+#undef HALF_NOTHROW
+#ifdef HALF_POP_WARNINGS
+#pragma warning(pop)
+#undef HALF_POP_WARNINGS
+#endif
+
+#endif