`mmt4d` ukernel for the `bf16*bf16->f32` case using AVX-512-BF16 (#15089)

`bf16*bf16->f32` is the one floating-point element type that can perform
faster than regular `f32` on widely-available x86 CPUs, as AVX-512-BF16
is available on Intel Cooper Lake and AMD Zen4 microarchitectures.

By contrast, AVX-512-FP16 is only available on Intel Sapphire Rapids.

The below benchmark results show this being a 2x speedup over `f32` and
matching current `i8*i8->i32` performance with VNNI, which could make it
quite useful as rounding f32 to the nearest bf16 is easier and less
accuracy-compromising than i8-quantizing. The accumulator is still f32
so there's no change there.

### Crazy idea

Rewriting `f32` matmuls into rounding LHS/RHS to `bf16` then doing a
`bf16*bf16->f32` matmul is something that we could do as an (opt-in)
automatic rewrite for people who have a `f32` workload on their hands
and who would like a quick flag to try to get a cheap speedup. Accuracy
is likely to be good enough for a majority of workloads, unlike much
harder `i8` quantization. Try this flag, get 2x speedup on f32 workloads
on recent x86 CPU, and a 4x speedup on recent ARM. By contrast, an
equivalent flag for fp16 would be a 2x slowdown on x86 (except Sapphire
Rapids) and a 2x speedup on recent ARM.

### Benchmark on AMD Zen4 (Ryzen 9 7940HS), `mmt4d_benchmark`
(single-thread microbenchmark):

|Benchmark                                              |Gop/s|
|-------------------------------------------------------|-----|
|BM_mmt4d_f32f32f32_tile_1x8x1_avx2_fma                 |25.5 |
|BM_mmt4d_f32f32f32_tile_2x8x1_avx2_fma                 |43.3 |
|BM_mmt4d_f32f32f32_tile_4x8x1_avx2_fma                 |82.3 |
|BM_mmt4d_f32f32f32_tile_8x8x1_avx2_fma                 |132.9|
|BM_mmt4d_f32f32f32_tile_1x16x1_avx512_base             |44.1 |
|BM_mmt4d_f32f32f32_tile_2x16x1_avx512_base             |87.8 |
|BM_mmt4d_f32f32f32_tile_4x16x1_avx512_base             |167.1|
|BM_mmt4d_f32f32f32_tile_8x16x1_avx512_base             |166.7|
|BM_mmt4d_f32f32f32_tile_16x16x1_avx512_base            |166.3|
|BM_mmt4d_f16f16f32_tile_1x8x1_avx2_fma                 |21.6 |
|BM_mmt4d_f16f16f32_tile_2x8x1_avx2_fma                 |41.0 |
|BM_mmt4d_f16f16f32_tile_4x8x1_avx2_fma                 |74.1 |
|BM_mmt4d_f16f16f32_tile_8x8x1_avx2_fma                 |81.0 |
|BM_mmt4d_f16f16f32_tile_1x16x1_avx512_base             |38.6 |
|BM_mmt4d_f16f16f32_tile_2x16x1_avx512_base             |64.5 |
|BM_mmt4d_f16f16f32_tile_4x16x1_avx512_base             |73.5 |
|BM_mmt4d_f16f16f32_tile_8x16x1_avx512_base             |79.4 |
|BM_mmt4d_f16f16f32_tile_16x16x1_avx512_base            |82.6 |
|BM_mmt4d_f16f16f16_tile_1x8x1_avx2_fma                 |21.6 |
|BM_mmt4d_f16f16f16_tile_2x8x1_avx2_fma                 |40.9 |
|BM_mmt4d_f16f16f16_tile_4x8x1_avx2_fma                 |73.8 |
|BM_mmt4d_f16f16f16_tile_8x8x1_avx2_fma                 |80.1 |
|BM_mmt4d_f16f16f16_tile_1x16x1_avx512_base             |39.1 |
|BM_mmt4d_f16f16f16_tile_2x16x1_avx512_base             |66.5 |
|BM_mmt4d_f16f16f16_tile_4x16x1_avx512_base             |73.7 |
|BM_mmt4d_f16f16f16_tile_8x16x1_avx512_base             |79.3 |
|BM_mmt4d_f16f16f16_tile_16x16x1_avx512_base            |82.3 |
|BM_mmt4d_bf16bf16f32_tile_1x16x2_avx512_bf16           |68.0 |
|BM_mmt4d_bf16bf16f32_tile_2x16x2_avx512_bf16           |123.2|
|BM_mmt4d_bf16bf16f32_tile_4x16x2_avx512_bf16           |228.9|
|BM_mmt4d_bf16bf16f32_tile_8x16x2_avx512_bf16           |333.6|
|BM_mmt4d_bf16bf16f32_tile_16x16x2_avx512_bf16          |332.2|
|BM_mmt4d_i8i8i32_tile_1x8x2_avx2_fma                   |57.6 |
|BM_mmt4d_i8i8i32_tile_2x8x2_avx2_fma                   |78.3 |
|BM_mmt4d_i8i8i32_tile_4x8x2_avx2_fma                   |92.9 |
|BM_mmt4d_i8i8i32_tile_8x8x2_avx2_fma                   |186.0|
|BM_mmt4d_i8i8i32_tile_1x16x2_avx512_base               |37.8 |
|BM_mmt4d_i8i8i32_tile_2x16x2_avx512_base               |49.0 |
|BM_mmt4d_i8i8i32_tile_4x16x2_avx512_base               |59.2 |
|BM_mmt4d_i8i8i32_tile_8x16x2_avx512_base               |118.4|
|BM_mmt4d_i8i8i32_tile_16x16x2_avx512_base              |231.8|
|BM_mmt4d_i8i8i32_tile_1x16x2_avx512_vnni               |50.8 |
|BM_mmt4d_i8i8i32_tile_2x16x2_avx512_vnni               |70.0 |
|BM_mmt4d_i8i8i32_tile_4x16x2_avx512_vnni               |83.3 |
|BM_mmt4d_i8i8i32_tile_8x16x2_avx512_vnni               |165.5|
|BM_mmt4d_i8i8i32_tile_16x16x2_avx512_vnni              |328.1|
10 files changed
tree: 90c7b0f4d121ae7a3e8a4670d5471bda7f9733cf
  1. .devcontainer/
  2. .github/
  3. build_tools/
  4. compiler/
  5. docs/
  6. experimental/
  7. integrations/
  8. lib/
  9. llvm-external-projects/
  10. runtime/
  11. samples/
  12. tests/
  13. third_party/
  14. tools/
  15. .bazel_to_cmake.cfg.py
  16. .bazelignore
  17. .bazelrc
  18. .bazelversion
  19. .clang-format
  20. .dockerignore
  21. .git-blame-ignore-revs
  22. .gitignore
  23. .gitmodules
  24. .yamllint.yml
  25. AUTHORS
  26. BUILD.bazel
  27. CITATION.cff
  28. CMakeLists.txt
  29. configure_bazel.py
  30. CONTRIBUTING.md
  31. LICENSE
  32. README.md
  33. WORKSPACE
README.md

IREE: Intermediate Representation Execution Environment

IREE (Intermediate Representation Execution Environment, pronounced as “eerie”) is an MLIR-based end-to-end compiler and runtime that lowers Machine Learning (ML) models to a unified IR that scales up to meet the needs of the datacenter and down to satisfy the constraints and special considerations of mobile and edge deployments.

See our website for project details, user guides, and instructions on building from source.

CI Status

Project Status

IREE is still in its early phase. We have settled down on the overarching infrastructure and are actively improving various software components as well as project logistics. It is still quite far from ready for everyday use and is made available without any support at the moment. With that said, we welcome any kind of feedback on any communication channels!

Communication Channels

Related Project Channels

  • MLIR topic within LLVM Discourse: IREE is enabled by and heavily relies on MLIR. IREE sometimes is referred to in certain MLIR discussions. Useful if you are also interested in MLIR evolution.

Architecture Overview

IREE Architecture IREE Architecture

See our website for more information.

Presentations and Talks

License

IREE is licensed under the terms of the Apache 2.0 License with LLVM Exceptions. See LICENSE for more information.