commit | 2e13d8febf3d2b77537d5c2469778dffdc6f71b2 | [log] [tgz] |
---|---|---|
author | Lei Zhang <antiagainst@google.com> | Thu Apr 29 16:30:32 2021 -0400 |
committer | GitHub <noreply@github.com> | Thu Apr 29 16:30:32 2021 -0400 |
tree | 786df79468b97928c2de60562aa7c531b41ac0b8 | |
parent | be02a4a1681e833767b0137479b56a04b337473f [diff] |
Mark the buffer created from parsing tensors as dispatchable (#5680) The buffers containing the parsed tensor elements are typically used as initial inputs and bound to pipelines. Marking them as suitable for dispatch fixes the Vulkan validation issue: [ VUID-VkWriteDescriptorSet-descriptorType-00331 ] Attempted write update to buffer descriptor failed due to: Buffer with usage mask 0x3 being used for a descriptor update of type VK_DESCRIPTOR_TYPE_STORAGE_BUFFER does not have VK_BUFFER_USAGE_STORAGE_BUFFER_BIT set.. The Vulkan spec states: If descriptorType is VK_DESCRIPTOR_TYPE_STORAGE_BUFFER or VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC, the buffer member of each element of pBufferInfo must have been created with VK_BUFFER_USAGE_STORAGE_BUFFER_BIT set.
IREE (Intermediate Representation Execution Environment, pronounced as “eerie”) is an MLIR-based end-to-end compiler that lowers ML models to a unified IR optimized for real-time mobile/edge inference against heterogeneous hardware accelerators. IREE also provides flexible deployment solutions for the compiled ML models.
IREE is still in its early phase. We have settled down on the overarching infrastructure and are actively improving various software components as well as project logistics. It is still quite far from ready for everyday use and is made available without any support at the moment. With that said, we welcome any kind of feedback on any communication channels!
Python packages are published on the releases page. See the colab/ directory for examples.
IREE can be built from source using both Bazel and CMake on Windows and Linux. We also have experimental macOS support.
Please see the Getting Started pages on IREE's documentation hub to configure, compile, and run IREE in your favorite development environment!
IREE hosts all its documentation and project status dashboards on GitHub Pages. We are still building up the website; please feel free to create issues for the documentation you'd like to see!
We also have some public talks that explain IREE's concepts and architecture:
IREE adopts a holistic approach towards ML model compilation: the IR produced contains both the scheduling logic, required to communicate data dependencies to low-level parallel pipelined hardware/API like Vulkan, and the execution logic, encoding dense computation on the hardware in the form of hardware/API-specific binaries like SPIR-V.
The architecture of IREE is best illustrated by the following picture:
Being compilation-based means IREE does not have a traditional runtime that dispatches “ops” to their fat kernel implementations. What IREE provides is a toolbox for different deployment scenarios. It scales from running generated code on a particular API (such as emitting C code calling external DSP kernels), to a HAL (Hardware Abstraction Layer) that allows the same generated code to target multiple APIs (like Vulkan and Direct3D 12), to a full VM allowing runtime model loading for flexible deployment options and heterogeneous execution.
IREE aims to
IREE is in the early stages of development and not yet ready for broad adoption. Check out the long-term design roadmap to get a sense of where we're headed.
We plan on a quarterly basis using OKRs. Review our latest objectives to get a sense of what we're up to in the near term.
We use GitHub Projects to track progress on IREE components and specific efforts. We use GitHub Milestones to track the work associated with plans for each quarter.
IREE is licensed under the terms of the Apache license. See LICENSE for more information.