Merge pull request #3048 from GMNGeoffrey:main-to-google
PiperOrigin-RevId: 329558845
diff --git a/colab/edge_detection.ipynb b/colab/edge_detection.ipynb
index eaa26b6..18528e4 100644
--- a/colab/edge_detection.ipynb
+++ b/colab/edge_detection.ipynb
@@ -338,11 +338,10 @@
"\n",
"Overview:\n",
"\n",
- "1. Save the `tf.Module` as a `SavedModel`\n",
- "2. Use IREE's python bindings to load the `SavedModel` into MLIR in the `mhlo` dialect\n",
- "3. Save the MLIR to a file (can stop here to use it from another application)\n",
- "4. Compile the `mhlo` MLIR into a VM module for IREE to execute\n",
- "5. Run the VM module through IREE's runtime to test the edge detection function"
+ "1. Convert the `tf.Module` into an IREE compiler module\n",
+ "2. Save the MLIR assembly from the module into a file (can stop here to use it from another application)\n",
+ "3. Compile the `mhlo` MLIR into a VM module for IREE to execute\n",
+ "4. Run the VM module through IREE's runtime to test the edge detection function"
]
},
{
diff --git a/experimental/ModelBuilder/test/BenchMatMulVectorGPU.cpp b/experimental/ModelBuilder/test/BenchMatMulVectorGPU.cpp
index 1b5291c..9c8a1f6 100644
--- a/experimental/ModelBuilder/test/BenchMatMulVectorGPU.cpp
+++ b/experimental/ModelBuilder/test/BenchMatMulVectorGPU.cpp
@@ -135,8 +135,8 @@
Value vSubgroupY = b.create<ConstantIndexOp>(loc, numSubgroupY);
SmallVector<linalg::ProcInfo, 2> procInfo(2);
using namespace edsc::op;
- procInfo[0] = {sg % vSubgroupX, vSubgroupX};
- procInfo[1] = {sgdiv % vSubgroupY, vSubgroupY};
+ procInfo[0] = {sgdiv % vSubgroupY, vSubgroupY};
+ procInfo[1] = {sg % vSubgroupX, vSubgroupX};
return procInfo;
}
@@ -325,7 +325,7 @@
linalg::LinalgTilingOptions()
.setLoopType(linalg::LinalgTilingLoopType::ParallelLoops)
.setTileSizes(
- {tileN / numSubgroupY, tileM / numSubgroupX, tileK})
+ {tileM / numSubgroupY, tileN / numSubgroupX, tileK})
.setDistributionOptions(SGDistribute));
}
strategy.vectorize<linalg::MatmulOp>().unrollVector<vector::ContractionOp>(
diff --git a/iree/compiler/Conversion/LinalgToSPIRV/CooperativeMatrixAnalysis.cpp b/iree/compiler/Conversion/LinalgToSPIRV/CooperativeMatrixAnalysis.cpp
index b5e9da8..a656bcd 100644
--- a/iree/compiler/Conversion/LinalgToSPIRV/CooperativeMatrixAnalysis.cpp
+++ b/iree/compiler/Conversion/LinalgToSPIRV/CooperativeMatrixAnalysis.cpp
@@ -14,7 +14,9 @@
#include "iree/compiler/Conversion/LinalgToSPIRV/CooperativeMatrixAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
+#include "mlir/Dialect/SCF/SCF.h"
#include "mlir/Dialect/SPIRV/TargetAndABI.h"
+#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/Vector/VectorOps.h"
using namespace mlir;
@@ -50,7 +52,8 @@
}
bool supportsCooperativeMatrix(Operation* op) {
- if (isa<vector::TransferReadOp>(op) || isa<vector::TransferWriteOp>(op))
+ if (isa<vector::TransferReadOp, vector::TransferWriteOp, scf::ForOp,
+ scf::YieldOp>(op))
return true;
if (isa<vector::ContractionOp>(op) &&
isLegalVectorContract(cast<vector::ContractionOp>(op)))
@@ -75,12 +78,14 @@
auto contract = dyn_cast<vector::ContractionOp>(op);
if (contract == nullptr) return;
auto hasVectorDest = [](Operation* op) {
+ if (isa<ConstantOp, AllocOp>(op)) return false;
for (auto resultType : op->getResultTypes()) {
if (resultType.isa<VectorType>()) return true;
}
+ if (op->getNumResults() == 0) return true;
return false;
};
- auto dependentOps = getSlice(op, hasVectorDest);
+ auto dependentOps = getSlice(op, hasVectorDest, hasVectorDest);
for (auto* dependeOp : dependentOps) {
// If any instruction cannot use cooperative matrix drop the whole chaine.
// In the future we can introduce "bitcast" type of conversion to allow
diff --git a/iree/compiler/Conversion/LinalgToSPIRV/test/convert_to_spirv.mlir b/iree/compiler/Conversion/LinalgToSPIRV/test/convert_to_spirv.mlir
index eb4f098..9737bb6 100644
--- a/iree/compiler/Conversion/LinalgToSPIRV/test/convert_to_spirv.mlir
+++ b/iree/compiler/Conversion/LinalgToSPIRV/test/convert_to_spirv.mlir
@@ -66,3 +66,41 @@
return
}
}
+
+// -----
+
+#map0 = affine_map<(d0, d1) -> (d0, d1)>
+#map1 = affine_map<(d0, d1, d2) -> (d0, d2)>
+#map2 = affine_map<(d0, d1, d2) -> (d2, d1)>
+#map3 = affine_map<(d0, d1, d2) -> (d0, d1)>
+
+module attributes {gpu.container_module, spv.target_env = #spv.target_env<#spv.vce<v1.0, [Shader, CooperativeMatrixNV, Int8, Float16, StorageUniform16, StorageBuffer8BitAccess, Float16Buffer], [SPV_KHR_storage_buffer_storage_class, SPV_NV_cooperative_matrix, SPV_KHR_8bit_storage, SPV_KHR_16bit_storage]>, {max_compute_workgroup_invocations = 128 : i32, max_compute_workgroup_size = dense<[128, 128, 64]> : vector<3xi32>}>} {
+ func @kernel_matmul_licm(%arg0: memref<4096x4096xi8>, %arg1: memref<4096x4096xi8>, %arg2: memref<4096x4096xi32>) attributes {spv.entry_point_abi = {local_size = dense<[32, 1, 1]> : vector<3xi32>}} {
+ %c32 = constant 32 : index
+ %c4096 = constant 4096 : index
+ %c0 = constant 0 : index
+ %c0_i32 = constant 0 : i32
+ %c0_i8 = constant 0 : i8
+ // CHECK: %[[C:.+]] = spv.CooperativeMatrixLoadNV %{{.*}}, %{{.*}}, %{{.*}}
+ %4 = vector.transfer_read %arg2[%c0, %c0], %c0_i32 {masked = [false, false]} : memref<4096x4096xi32>, vector<16x16xi32>
+ // CHECK: %[[ACC:.+]] = spv.Variable : !spv.ptr<!spv.coopmatrix<16x16xi32, Subgroup>, Function>
+ // CHECK: spv.loop {
+ // CHECK: spv.Branch ^[[BB:.+]](%{{.*}}, %[[C]] : i32, !spv.coopmatrix<16x16xi32, Subgroup>)
+ // CHECK: ^[[BB]](%{{.*}}: i32, %[[C1:.+]]: !spv.coopmatrix<16x16xi32, Subgroup>)
+ %5 = scf.for %arg3 = %c0 to %c4096 step %c32 iter_args(%arg4 = %4) -> (vector<16x16xi32>) {
+ // CHECK: %[[A:.+]] = spv.CooperativeMatrixLoadNV %{{.*}}, %{{.*}}, %{{.*}}
+ %6 = vector.transfer_read %arg0[%c0, %arg3], %c0_i8 {masked = [false, false]} : memref<4096x4096xi8>, vector<16x32xi8>
+ // CHECK: %[[B:.+]] = spv.CooperativeMatrixLoadNV %{{.*}}, %{{.*}}, %{{.*}}
+ %7 = vector.transfer_read %arg1[%arg3, %c0], %c0_i8 {masked = [false, false]} : memref<4096x4096xi8>, vector<32x16xi8>
+ // CHECK: %[[R:.+]] = spv.CooperativeMatrixMulAddNV %[[A]], %[[B]], %[[C1]]
+ %8 = vector.contract {indexing_maps = [#map1, #map2, #map3], iterator_types = ["parallel", "parallel", "reduction"]} %6, %7, %arg4 : vector<16x32xi8>, vector<32x16xi8> into vector<16x16xi32>
+ // CHECK: spv.Store "Function" %[[ACC]], %[[R]] : !spv.coopmatrix<16x16xi32, Subgroup>
+ // CHECK: spv.Branch ^[[BB]](%{{.*}}, %[[R]] : i32, !spv.coopmatrix<16x16xi32, Subgroup>)
+ scf.yield %8 : vector<16x16xi32>
+ }
+ // CHECK: %[[ACCv:.+]] = spv.Load "Function" %[[ACC]] : !spv.coopmatrix<16x16xi32, Subgroup>
+ // CHECK: spv.CooperativeMatrixStoreNV %{{.*}}, %[[ACCv]], %{{.*}}, %{{.*}}
+ vector.transfer_write %5, %arg2[%c0, %c0] : vector<16x16xi32>, memref<4096x4096xi32>
+ return
+ }
+}