Use tile and fuse on tensors for CPU pipeline (#7533)

The PR adds a new enum value for developing the new codegen strategy,
which aims to vectorizes matmul + generic cases.

Different from GPU pipeline, we don't apply unrolling vectors pass. Unrolling vectors would cause register pressure. For now, we still follow what we have. We can revisit if we want unrolling or not later.

The rest of regression in `BM_dot_384x512x2` is because that it's not vectorized. Because there are dynamic shapes and the pass does nothing when any of the ops can't be vectorized.

## Single threaded performance on x86.

Before:

```
----------------------------------------------------------------------------------------
Benchmark                                              Time             CPU   Iterations
----------------------------------------------------------------------------------------
BM_dot_384x384x512/process_time/real_time           3.84 ms         3.84 ms          182
BM_dot_384x128x128/process_time/real_time          0.149 ms        0.149 ms         4704
BM_dot_384x128x512/process_time/real_time          0.733 ms        0.733 ms          959
BM_dot_384x512x128/process_time/real_time          0.651 ms        0.651 ms         1063
BM_dot_384x512x2/process_time/real_time            0.313 ms        0.313 ms         2240
BM_dot_384x384x32/process_time/real_time           0.184 ms        0.184 ms         3785
BM_dot_384x384x512_exp/process_time/real_time       3.85 ms         3.85 ms          182
BM_dot_384x128x128_exp/process_time/real_time      0.175 ms        0.175 ms         4157
BM_dot_384x128x512_exp/process_time/real_time      0.887 ms        0.887 ms          809
BM_dot_384x512x128_exp/process_time/real_time      0.669 ms        0.669 ms          964
BM_dot_384x512x2_exp/process_time/real_time        0.342 ms        0.342 ms         2074
BM_dot_384x384x32_exp/process_time/real_time       0.194 ms        0.193 ms         3592
```

After:

```
----------------------------------------------------------------------------------------
Benchmark                                              Time             CPU   Iterations
----------------------------------------------------------------------------------------
BM_dot_384x384x512/process_time/real_time           2.60 ms         2.60 ms          263
BM_dot_384x128x128/process_time/real_time          0.124 ms        0.124 ms         5680
BM_dot_384x128x512/process_time/real_time          0.500 ms        0.500 ms         1393
BM_dot_384x512x128/process_time/real_time          0.550 ms        0.550 ms         1269
BM_dot_384x512x2/process_time/real_time            0.507 ms        0.507 ms         1393
BM_dot_384x384x32/process_time/real_time           0.124 ms        0.124 ms         5668
BM_dot_384x384x512_exp/process_time/real_time       2.50 ms         2.50 ms          276
BM_dot_384x128x128_exp/process_time/real_time      0.136 ms        0.136 ms         5200
BM_dot_384x128x512_exp/process_time/real_time      0.550 ms        0.550 ms         1263
BM_dot_384x512x128_exp/process_time/real_time      0.561 ms        0.561 ms         1234
BM_dot_384x512x2_exp/process_time/real_time        0.515 ms        0.515 ms         1352
BM_dot_384x384x32_exp/process_time/real_time       0.129 ms        0.129 ms         5439
```
17 files changed
tree: 5158a0d224cb737f1e6fbc787954133f2e12c9cb
  1. .github/
  2. benchmarks/
  3. bindings/
  4. build_tools/
  5. colab/
  6. docs/
  7. experimental/
  8. integrations/
  9. iree/
  10. llvm-external-projects/
  11. scripts/
  12. third_party/
  13. .bazelignore
  14. .bazelrc
  15. .bazelversion
  16. .clang-format
  17. .gitignore
  18. .gitmodules
  19. .style.yapf
  20. .yamllint.yml
  21. AUTHORS
  22. BUILD.bazel
  23. CMakeLists.txt
  24. configure_bazel.py
  25. CONTRIBUTING.md
  26. LICENSE
  27. README.md
  28. SUBMODULE_VERSIONS.txt
  29. WORKSPACE
README.md

IREE: Intermediate Representation Execution Environment

IREE (Intermediate Representation Execution Environment, pronounced as “eerie”) is an MLIR-based end-to-end compiler and runtime that lowers Machine Learning (ML) models to a unified IR that scales up to meet the needs of the datacenter and down to satisfy the constraints and special considerations of mobile and edge deployments.

See our website for project details, user guides, and instructions on building from source.

Project Status

IREE is still in its early phase. We have settled down on the overarching infrastructure and are actively improving various software components as well as project logistics. It is still quite far from ready for everyday use and is made available without any support at the moment. With that said, we welcome any kind of feedback on any communication channels!

Communication Channels

Related Project Channels

  • MLIR topic within LLVM Discourse: IREE is enabled by and heavily relies on MLIR. IREE sometimes is referred to in certain MLIR discussions. Useful if you are also interested in MLIR evolution.

Build Status

CI SystemBuild SystemPlatformArchitectureConfiguration / ComponentStatus
KokoroBazelLinuxx86-64kokoro status bazel/linux/x86-swiftshader/core
KokoroCMake & BazelLinuxx86-64 (swiftshader)Integrationskokoro status cmake-bazel/linux/x86-swiftshader
KokoroCMake & BazelLinuxx86-64 (turing)Integrationskokoro status cmake-bazel/linux/x86-turing
KokoroCMakeLinuxx86-64 (swiftshader)kokoro status cmake/linux/x86-swiftshader
KokoroCMakeLinuxx86-64 (swiftshader)asankokoro status cmake/linux/x86-swiftshader-asan
KokoroCMakeLinuxx86-64 (turing)kokoro status cmake/linux/x86-turing
KokoroCMakeAndroidarm64-v8aRuntime (build only)kokoro status cmake/android/arm64-v8a
KokoroCMakeBare Metalrisc-v-32Runtimekokoro status cmake/baremetal/riscv32
KokoroCMakeLinuxrisc-v-64Runtimekokoro status cmake/linux/riscv64
BuildkiteCMakeAndroidarm64-v8aRuntimebuildkite status iree-android-arm64-v8a
BuildKiteCMakeAndroidarm64-v8aRuntime Benchmarksbuildkite status iree-benchmark
BuildKiteCMakeLinuxx86-64Tracing + Standalone Runtimebuildkite status iree-build-configurations

Architecture Overview

IREE Architecture

See our website for more information.

Presentations and Talks

  • 2021-06-09: IREE Runtime Design Tech Talk (recording and slides)
  • 2020-08-20: IREE CodeGen: MLIR Open Design Meeting Presentation (recording and slides)
  • 2020-03-18: Interactive HAL IR Walkthrough (recording)
  • 2020-01-31: End-to-end MLIR Workflow in IREE: MLIR Open Design Meeting Presentation (recording and slides)

License

IREE is licensed under the terms of the Apache 2.0 License with LLVM Exceptions. See LICENSE for more information.