[Cleanup] Delete tiling tensor.pad test from LinalgExt. (#15902)

This is covered by upstream tests. Although they are tiling with
different tile sizes, but the test coverage is the same. We do not add
such file to LinalgExt/.

The upstream test can be found at
https://github.com/llvm/llvm-project/blob/215c5656449c8e817a3759d989f27ba39d711cbd/mlir/test/Dialect/Tensor/tiling.mlir#L25-L40
diff --git a/llvm-external-projects/iree-dialects/test/Dialect/iree_linalg_ext/pad_tiling.mlir b/llvm-external-projects/iree-dialects/test/Dialect/iree_linalg_ext/pad_tiling.mlir
deleted file mode 100644
index 21f7af3..0000000
--- a/llvm-external-projects/iree-dialects/test/Dialect/iree_linalg_ext/pad_tiling.mlir
+++ /dev/null
@@ -1,41 +0,0 @@
-// RUN: iree-dialects-opt --iree-linalg-ext-tile --split-input-file %s | FileCheck  %s
-// XFAIL: *
-// TODO: Re-enable when upstream tensor.pad op properly implements the tiling
-// interface.
-
-func.func @pad_tensor(%arg0 : tensor<?x?xf32>, %arg1 : index, %arg2 : index,
-    %arg3 : index, %arg4 : index, %arg5 : f32) -> tensor<?x?xf32> {
-  %0 = tensor.pad %arg0 low[%arg1, %arg2] high[%arg3, %arg4] {
-    ^bb0(%arg6 : index, %arg7 : index):
-      tensor.yield %arg5 : f32
-  } {__internal_iree_linalg_transform__ = "tiling_input"}
-      :  tensor<?x?xf32> to tensor<?x?xf32>
-  return %0 : tensor<?x?xf32>
-}
-//  CHECK-DAG: #[[MAP0:.+]] = affine_map<()[s0, s1, s2] -> (s2 + s0 + s1)>
-//      CHECK: func.func @pad_tensor
-// CHECK-SAME:   %[[ARG0:[a-zA-Z0-9]+]]: tensor<?x?xf32>
-// CHECK-SAME:   %[[ARG1:[a-zA-Z0-9]+]]: index
-// CHECK-SAME:   %[[ARG2:[a-zA-Z0-9]+]]: index
-// CHECK-SAME:   %[[ARG3:[a-zA-Z0-9]+]]: index
-// CHECK-SAME:   %[[ARG4:[a-zA-Z0-9]+]]: index
-// CHECK-SAME:   %[[ARG5:[a-zA-Z0-9]+]]: f32
-//  CHECK-DAG:   %[[C0:.+]] = arith.constant 0 : index
-//  CHECK-DAG:   %[[C1:.+]] = arith.constant 1 : index
-//  CHECK-DAG:   %[[C10:.+]] = arith.constant 10 : index
-//  CHECK-DAG:   %[[C20:.+]] = arith.constant 20 : index
-//  CHECK-DAG:   %[[INIT:.+]] = tensor.empty()
-//      CHECK:   %[[D0:.+]] = tensor.dim %[[ARG0]], %[[C0]]
-//      CHECK:   %[[UBY:.+]] = affine.apply #[[MAP0]]()[%[[ARG1]], %[[ARG3]], %[[D0]]]
-//      CHECK:   %[[D1:.+]] = tensor.dim %[[ARG0]], %[[C1]]
-//      CHECK:   %[[UBX:.+]] = affine.apply #[[MAP0]]()[%[[ARG2]], %[[ARG4]], %[[D1]]]
-//      CHECK:   %[[RESULT:.+]] = scf.for %[[IV0:[a-zA-Z0-9]+]] = %[[C0]] to %[[UBY]] step %[[C10]]
-// CHECK-SAME:       iter_args(%[[ARG7:.+]] = %[[INIT]])
-//      CHECK:     %[[YIELD:.+]] = scf.for %[[IV1:[a-zA-Z0-9]+]] = %[[C0]] to %[[UBX]] step %[[C20]]
-// CHECK-SAME:         iter_args(%[[ARG9:.+]] = %[[ARG7]])
-//      CHECK:       %[[PAD_TILE:.+]] = scf.if
-//      CHECK:       %[[INSERT:.+]] = tensor.insert_slice %[[PAD_TILE]] into %[[ARG9]]
-// CHECK-SAME:           [%[[IV0]], %[[IV1]]]
-//      CHECK:       scf.yield %[[INSERT]]
-//      CHECK:     scf.yield %[[YIELD]]
-//      CHECK:   return %[[RESULT]]