Revert "Add e2e test suite for the Attention - CPU Backend" (#18302)

Reverts iree-org/iree#17751. A few of the new tests are failing on
various platforms:

* Timeouts (after 60 seconds) in
`iree/tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_large_llvm-cpu_local-task`
on GitHub-hosted Windows and macOS runners
*
https://github.com/iree-org/iree/actions/runs/10468974350/job/28990992473#step:8:2477
*
https://github.com/iree-org/iree/actions/runs/10468947894/job/28990909629#step:9:3076
    
    ```
1529/1568 Test #969:
iree/tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_large_llvm-cpu_local-task
.............................***Timeout 60.07 sec
---
TEST[attention_2_2048_256_512_128_dtype_f16_f16_f16_f16_2_2048_256_512_128_256_1.0_0]
---
    Attention shape (BATCHxMxK1xK2xN): 2x2048x256x512x256x128
    ```

* Compilation error on arm64:
https://github.com/iree-org/iree/actions/runs/10468944505/job/28990909321#step:4:9815:

    ```
[415/1150] Generating
/work/build-arm64/tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_medium_llvm-cpu_local-task_attention.vmfb
from
e2e_attention_cpu_f16_f16_f16_medium_llvm-cpu_local-task_attention.mlir
FAILED:
tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_medium_llvm-cpu_local-task_attention.vmfb
/work/build-arm64/tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_medium_llvm-cpu_local-task_attention.vmfb
cd /work/build-arm64/tests/e2e/attention &&
/work/build-arm64/tools/iree-compile --output-format=vm-bytecode
--mlir-print-op-on-diagnostic=false --iree-hal-target-backends=llvm-cpu
/work/build-arm64/tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_medium_llvm-cpu_local-task_attention.mlir
-o
/work/build-arm64/tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_medium_llvm-cpu_local-task_attention.vmfb
--iree-hal-executable-object-search-path=\"/work/build-arm64\"
--iree-llvmcpu-embedded-linker-path=\"/work/build-arm64/llvm-project/bin/lld\"
--iree-llvmcpu-wasm-linker-path=\"/work/build-arm64/llvm-project/bin/lld\"

/work/build-arm64/tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_medium_llvm-cpu_local-task_attention.mlir:4:14:
error: Yield operand #2 is not equivalent to the corresponding iter
bbArg
      %result1 = iree_linalg_ext.attention {
                 ^

/work/build-arm64/tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_medium_llvm-cpu_local-task_attention.mlir:1:1:
note: called from
func.func @attention_2_1024_128_256_64_dtype_f16_f16_f16_f16(%query:
tensor<2x1024x128xf16>, %key: tensor<2x256x128xf16>, %value:
tensor<2x256x64xf16>, %scale: f32) -> tensor<2x1024x64xf16> {
    ^

/work/build-arm64/tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_medium_llvm-cpu_local-task_attention.mlir:4:14:
error: failed to run translation of source executable to target
executable for backend #hal.executable.target<"llvm-cpu",
"embedded-elf-arm_64", {cpu = "generic", cpu_features = "+reserve-x18",
data_layout =
"e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128-Fn32",
native_vector_size = 16 : i64, target_triple =
"aarch64-unknown-unknown-eabi-elf"}>
      %result1 = iree_linalg_ext.attention {
                 ^

/work/build-arm64/tests/e2e/attention/e2e_attention_cpu_f16_f16_f16_medium_llvm-cpu_local-task_attention.mlir:1:1:
note: called from
func.func @attention_2_1024_128_256_64_dtype_f16_f16_f16_f16(%query:
tensor<2x1024x128xf16>, %key: tensor<2x256x128xf16>, %value:
tensor<2x256x64xf16>, %scale: f32) -> tensor<2x1024x64xf16> {
    ^
    failed to translate executables
    ```
diff --git a/tests/e2e/attention/BUILD.bazel b/tests/e2e/attention/BUILD.bazel
deleted file mode 100644
index 3e9e41d..0000000
--- a/tests/e2e/attention/BUILD.bazel
+++ /dev/null
@@ -1,53 +0,0 @@
-# Copyright 2024 The IREE Authors
-#
-# Licensed under the Apache License v2.0 with LLVM Exceptions.
-# See https://llvm.org/LICENSE.txt for license information.
-# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-# End-to-end attention tests.
-
-load("//build_tools/bazel:iree_e2e_generated_runner_test.bzl", "iree_generated_e2e_runner_test")
-
-package(
-    features = ["layering_check"],
-    licenses = ["notice"],  # Apache 2.0
-)
-
-py_binary(
-    name = "generate_e2e_attention_tests",
-    srcs = ["generate_e2e_attention_tests.py"],
-)
-
-###########################################################################
-##
-## LLVMCPU backend
-##
-###########################################################################
-
-# Default CPU backend.
-[iree_generated_e2e_runner_test(
-    name = "e2e_attention_cpu_%s_%s_%s_%s" % (dtype, dtype, dtype, size),
-    generator = ":generate_e2e_attention_tests",
-    generator_args = [
-        "--query_type=%s" % dtype,
-        "--key_type=%s" % dtype,
-        "--value_type=%s" % dtype,
-        "--shapes=%s" % size,
-    ],
-    tags = [
-        "hostonly",
-        "local",
-    ],
-    target_backends_and_drivers = [
-        ("llvm-cpu", "local-task"),
-    ],
-    target_cpu_features_variants = ["default"],
-    test_runner = "//tools/testing/e2e:iree-e2e-attention-test",
-    test_type = "attention",
-) for dtype in [
-    "f16",
-] for size in [
-    "small",
-    "medium",
-    "large",
-]]
diff --git a/tests/e2e/attention/CMakeLists.txt b/tests/e2e/attention/CMakeLists.txt
deleted file mode 100644
index f793784..0000000
--- a/tests/e2e/attention/CMakeLists.txt
+++ /dev/null
@@ -1,88 +0,0 @@
-################################################################################
-# Autogenerated by build_tools/bazel_to_cmake/bazel_to_cmake.py from           #
-# tests/e2e/attention/BUILD.bazel                                              #
-#                                                                              #
-# Use iree_cmake_extra_content from iree/build_defs.oss.bzl to add arbitrary   #
-# CMake-only content.                                                          #
-#                                                                              #
-# To disable autogeneration for this file entirely, delete this header.        #
-################################################################################
-
-iree_add_all_subdirs()
-
-iree_generated_e2e_runner_test(
-  NAME
-    e2e_attention_cpu_f16_f16_f16_small
-  TEST_TYPE
-    attention
-  GENERATOR
-    "generate_e2e_attention_tests.py"
-  GENERATOR_ARGS
-    "--query_type=f16"
-    "--key_type=f16"
-    "--value_type=f16"
-    "--shapes=small"
-  TEST_RUNNER
-    iree_tools_testing_e2e_iree-e2e-attention-test
-  TARGET_BACKENDS
-    "llvm-cpu"
-  DRIVERS
-    "local-task"
-  LABELS
-    "hostonly"
-    "local"
-  TARGET_CPU_FEATURES_VARIANTS
-    "default"
-)
-
-iree_generated_e2e_runner_test(
-  NAME
-    e2e_attention_cpu_f16_f16_f16_medium
-  TEST_TYPE
-    attention
-  GENERATOR
-    "generate_e2e_attention_tests.py"
-  GENERATOR_ARGS
-    "--query_type=f16"
-    "--key_type=f16"
-    "--value_type=f16"
-    "--shapes=medium"
-  TEST_RUNNER
-    iree_tools_testing_e2e_iree-e2e-attention-test
-  TARGET_BACKENDS
-    "llvm-cpu"
-  DRIVERS
-    "local-task"
-  LABELS
-    "hostonly"
-    "local"
-  TARGET_CPU_FEATURES_VARIANTS
-    "default"
-)
-
-iree_generated_e2e_runner_test(
-  NAME
-    e2e_attention_cpu_f16_f16_f16_large
-  TEST_TYPE
-    attention
-  GENERATOR
-    "generate_e2e_attention_tests.py"
-  GENERATOR_ARGS
-    "--query_type=f16"
-    "--key_type=f16"
-    "--value_type=f16"
-    "--shapes=large"
-  TEST_RUNNER
-    iree_tools_testing_e2e_iree-e2e-attention-test
-  TARGET_BACKENDS
-    "llvm-cpu"
-  DRIVERS
-    "local-task"
-  LABELS
-    "hostonly"
-    "local"
-  TARGET_CPU_FEATURES_VARIANTS
-    "default"
-)
-
-### BAZEL_TO_CMAKE_PRESERVES_ALL_CONTENT_BELOW_THIS_LINE ###
diff --git a/tests/e2e/attention/generate_e2e_attention_tests.py b/tests/e2e/attention/generate_e2e_attention_tests.py
deleted file mode 100644
index f567a16..0000000
--- a/tests/e2e/attention/generate_e2e_attention_tests.py
+++ /dev/null
@@ -1,499 +0,0 @@
-#!/usr/bin/env python3
-# Copyright 2024 The IREE Authors
-#
-# Licensed under the Apache License v2.0 with LLVM Exceptions.
-# See https://llvm.org/LICENSE.txt for license information.
-# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-"""Generator for e2e attention tests.
-"""
-
-import argparse
-import enum
-import dataclasses
-import typing
-import math
-
-
-# Data type of kernel entries. The string values must match MLIR data types.
-@enum.unique
-class QueryElemTypeId(enum.Enum):
-    NONE = ""
-    F16 = "f16"
-
-
-# Data type of input entries. The string values must match MLIR data types.
-@enum.unique
-class KeyElemTypeId(enum.Enum):
-    NONE = ""
-    F16 = "f16"
-
-
-# Data type of input entries. The string values must match MLIR data types.
-@enum.unique
-class ValueElemTypeId(enum.Enum):
-    NONE = ""
-    F16 = "f16"
-
-
-# Data type of input entries. The string values must match MLIR data types.
-@enum.unique
-class ResultElemTypeId(enum.Enum):
-    NONE = ""
-    F16 = "f16"
-
-
-# Enumerates of the collections of shapes that we can generate tests for.
-# The values are the accepted values for the --shapes= flag.
-@enum.unique
-class ShapesId(enum.Enum):
-    SMALL = "small"
-    MEDIUM = "medium"
-    LARGE = "large"
-
-
-# batch: Batch dimension
-# m: M dimension of first and second matmul
-# n: N dimension of second matmul
-# k1: K dimension of first matmul
-# k2: K dimension of second matmul
-@dataclasses.dataclass
-class TestShapeAndScale:
-    batch: int
-    m: int
-    k1: int
-    k2: int
-    n: int
-    scale: float
-
-
-# Returns the list of TestShape's to use for the collection of shapes
-# identified by shapes_id.
-def get_test_shapes(shapes_id: ShapesId):
-    if shapes_id == ShapesId.SMALL:
-        return [
-            TestShapeAndScale(batch=2, m=512, k1=64, k2=128, n=32, scale=1.0),
-        ]
-    if shapes_id == ShapesId.MEDIUM:
-        return [
-            TestShapeAndScale(batch=2, m=1024, k1=128, k2=256, n=64, scale=1.0),
-        ]
-    if shapes_id == ShapesId.LARGE:
-        return [
-            TestShapeAndScale(batch=2, m=2048, k1=256, k2=512, n=128, scale=1.0),
-        ]
-
-    raise ValueError(shapes_id)
-
-
-# Determines the shape of input and kernel tensors.
-@dataclasses.dataclass
-class TestInputTensorShapes:
-    batch: int
-    m: int
-    k1: int
-    k2: int
-    n: int
-    scale: float
-
-
-# Helper for generate_function. Generates TestInputTensorShapes, i.e.
-# converts from the runtime shape dimensions in TestShape and given dynamicity to
-# the set of shapes to be used in a test function's input tensors.
-def generate_shapes_and_scale(shape: TestShapeAndScale):
-    batch = shape.batch
-    m = shape.m
-    k1 = shape.k1
-    k2 = shape.k2
-    n = shape.n
-    scale = shape.scale
-
-    shapes_scale = TestInputTensorShapes(
-        batch=batch,
-        m=m,
-        k1=k1,
-        k2=k2,
-        n=n,
-        scale=scale,
-    )
-    return shapes_scale
-
-
-# Helper to return input, kernel and output shapes based on the layout and the Attention Params.
-def get_tensor_shapes(
-    shapes_scale: TestShapeAndScale,
-):
-    batch = shapes_scale.batch
-    m = shapes_scale.m
-    k1 = shapes_scale.k1
-    k2 = shapes_scale.k2
-    n = shapes_scale.n
-    scale = shapes_scale.scale
-
-    query_tensor_shape = [batch, m, k1]
-    key_tensor_shape = [batch, k2, k1]
-    value_tensor_shape = [batch, k2, n]
-    result_tensor_shape = [batch, m, n]
-
-    return query_tensor_shape, key_tensor_shape, value_tensor_shape, result_tensor_shape
-
-
-# Helper for generate_function.
-# Generates a name for a test function in the generated MLIR code.
-def generate_function_name(
-    query_type: QueryElemTypeId,
-    key_type: KeyElemTypeId,
-    value_type: ValueElemTypeId,
-    shapes_scale: TestInputTensorShapes,
-):
-    query_t = query_type.value
-    key_t = key_type.value
-    value_t = value_type.value
-    result_t = value_type.value
-
-    batch = shapes_scale.batch
-    m = shapes_scale.m
-    k1 = shapes_scale.k1
-    k2 = shapes_scale.k2
-    n = shapes_scale.n
-
-    attention = "attention"
-    return (
-        f"{attention}_{batch}_{m}_{k1}_{k2}_{n}"
-        + f"_dtype_{query_t}_{key_t}_{value_t}_{result_t}"
-    )
-
-
-# Represents a generated test function.
-@dataclasses.dataclass
-class MLIRFunction:
-    name: str
-    signature: str
-    import_declaration: str
-    definition: str
-
-
-# Generates a test function in the generated MLIR code.
-# The generated function will take the same arguments as iree_linalg_ext.attention variants
-# and will just call iree_linalg_ext.attention variants with them, returning its result.
-def generate_function(
-    query_type: QueryElemTypeId,
-    key_type: KeyElemTypeId,
-    value_type: ValueElemTypeId,
-    shape_scale: TestShapeAndScale,
-):
-    shapes_scale = generate_shapes_and_scale(shape_scale)
-    func_name = generate_function_name(
-        query_type,
-        key_type,
-        value_type,
-        shapes_scale,
-    )
-
-    query_shape, key_shape, value_shape, result_shape = get_tensor_shapes(shapes_scale)
-    query_tensor_type = (
-        f"tensor<{query_shape[0]}x{query_shape[1]}x{query_shape[2]}x{query_type.value}>"
-    )
-    key_tensor_type = (
-        f"tensor<{key_shape[0]}x{key_shape[1]}x{key_shape[2]}x{key_type.value}>"
-    )
-    value_tensor_type = (
-        f"tensor<{value_shape[0]}x{value_shape[1]}x{value_shape[2]}x{value_type.value}>"
-    )
-    result_tensor_type = f"tensor<{result_shape[0]}x{result_shape[1]}x{result_shape[2]}x{value_type.value}>"
-    F32 = "f32"
-    F16 = "f16"
-    op_name = "iree_linalg_ext.attention"
-
-    # Compilation info is optional; prints empty string by default.
-    func_definition = ""
-
-    signature = f"({query_tensor_type}, {key_tensor_type}, {value_tensor_type}, {result_tensor_type}) -> {result_tensor_type}"
-    import_declaration = f"func.func private @module.{func_name}(%query: !hal.buffer_view, %key: !hal.buffer_view, %value: !hal.buffer_view, %scale: {F32}) -> !hal.buffer_view"
-    func_definition = func_definition + (
-        f"func.func @{func_name}(%query: {query_tensor_type}, %key: {key_tensor_type}, %value: {value_tensor_type}, %scale: {F32}) -> {result_tensor_type} {{\n"
-        f"  %result0 = tensor.empty(): {result_tensor_type}\n"
-        f"  %scale_f16 = arith.truncf %scale : {F32} to {F16} \n"
-        f"  %result1 = {op_name} {{\n"
-        f"      indexing_maps = [affine_map<(batch, m, n, k1, k2) -> (batch, m, k1)>,\n"
-        f"                       affine_map<(batch, m, n, k1, k2) -> (batch, k2, k1)>,\n"
-        f"                       affine_map<(batch, m, n, k1, k2) -> (batch, k2, n)>,\n"
-        f"                       affine_map<(batch, m, n, k1, k2) -> (batch, m, n)>]\n}}"
-        f"      ins(%query, %key, %value, %scale_f16: {query_tensor_type}, {key_tensor_type}, {value_tensor_type}, {F16})\n"
-        f"      outs(%result0: {result_tensor_type}) -> {result_tensor_type}\n"
-        f" return %result1: {result_tensor_type}\n"
-        f"}}\n"
-    )
-    return MLIRFunction(
-        name=func_name,
-        signature=signature,
-        import_declaration=import_declaration,
-        definition=func_definition,
-    )
-
-
-# Represents a call to a generated test function.
-@dataclasses.dataclass
-class TestCall:
-    function: MLIRFunction
-    op: str
-
-
-# Enumerates ways to initialize tensor buffer contents.
-@enum.unique
-class TensorGenerator(enum.Enum):
-    ZERO = "zero"  # Fill with zeros
-    RANDOM = "random"  # Fill with (deterministic) pseudorandom values.
-
-
-# Intentionally fixed seed! We want full reproducibility here, both across runs
-# and across machines.
-# Intentionally not shared with local_pseudorandom_state to limit the ways
-# in which shuffling testcases changes which random values are generated.
-pseudorandom_generator_seed = 1
-
-
-def contents_generator_tag(generator: TensorGenerator):
-    if generator == TensorGenerator.ZERO:
-        return ""
-    elif generator == TensorGenerator.RANDOM:
-        global pseudorandom_generator_seed
-        pseudorandom_generator_seed = pseudorandom_generator_seed + 1
-        return f"!tag:iree:fully_specified_pseudorandom {pseudorandom_generator_seed}"
-    else:
-        raise ValueError(generator)
-
-
-# Generate a 3d tensor function argument of the given size as `%name`.
-def generate_random_3d_tensor(
-    name: str,
-    tensor_shape: list,
-    element_type: typing.Union[QueryElemTypeId, ResultElemTypeId],
-):
-    global pseudorandom_generator_seed
-    pseudorandom_generator_seed = pseudorandom_generator_seed + 1
-    return (
-        f"  %{name}_dim0 = arith.constant {tensor_shape[0]} : i64\n"
-        f"  %{name}_dim1 = arith.constant {tensor_shape[1]} : i64\n"
-        f"  %{name}_dim2 = arith.constant {tensor_shape[2]} : i64\n"
-        f"  %{name}_element_type = hal.element_type<{element_type.value}> : i32\n"
-        f"  %{name}_seed = arith.constant {pseudorandom_generator_seed} : i32\n"
-        f"  %{name} = call @attention_test.generate_random_tensor(%device, %{name}_dim0, %{name}_dim1, %{name}_dim2, %{name}_element_type, %{name}_seed) : (!hal.device, i64, i64, i64, i32, i32) -> !hal.buffer_view\n"
-    )
-
-
-call_id = 0
-
-
-def generate_call(
-    function: MLIRFunction,
-    query_type: QueryElemTypeId,
-    key_type: KeyElemTypeId,
-    value_type: ValueElemTypeId,
-    shapes_scale: TestShapeAndScale,
-):
-    global call_id
-    func_name = f"{function.name}_{shapes_scale.batch}_{shapes_scale.m}_{shapes_scale.k1}_{shapes_scale.k2}_{shapes_scale.n}_{shapes_scale.k1}_{shapes_scale.scale}"
-    func_name = f"{func_name}_{call_id}"
-    call_id = call_id + 1
-
-    description = f"Attention shape (BATCHxMxK1xK2xN): {shapes_scale.batch}x{shapes_scale.m}x{shapes_scale.k1}x{shapes_scale.k2}x{shapes_scale.k1}x{shapes_scale.n}"
-    op = (
-        f"func.func @{func_name}() attributes {{\n"
-        f'  iree.reflection = {{description = "{description}"}}\n'
-        "} {\n"
-        "  %device_index = arith.constant 0 : index\n"
-        "  %device = hal.devices.get %device_index : !hal.device\n"
-    )
-
-    query_shape, key_shape, value_shape, result_shape = get_tensor_shapes(
-        shapes_scale,
-    )
-
-    op = op + generate_random_3d_tensor("query", query_shape, query_type)
-    op = op + generate_random_3d_tensor("key", key_shape, key_type)
-    op = op + generate_random_3d_tensor("value", value_shape, value_type)
-
-    global pseudorandom_generator_seed
-    pseudorandom_generator_seed = pseudorandom_generator_seed - 1
-    op = op + (
-        f"  %scale = arith.constant {shapes_scale.scale} : f32\n"
-        f"  %result = call @module.{function.name}(%query, %key, %value, %scale) : (!hal.buffer_view, !hal.buffer_view, !hal.buffer_view, f32) -> !hal.buffer_view\n"
-    )
-
-    op = op + (
-        f"  %batch = arith.constant {shapes_scale.batch} : i64 \n"
-        f"  %m = arith.constant {shapes_scale.m} : i64 \n"
-        f"  %k1 = arith.constant {shapes_scale.k1} : i64 \n"
-        f"  %k2 = arith.constant {shapes_scale.k2} : i64 \n"
-        f"  %n = arith.constant {shapes_scale.n} : i64 \n"
-        f"  %queryTensor = hal.tensor.import %query : !hal.buffer_view -> tensor<{shapes_scale.batch}x{shapes_scale.m}x{shapes_scale.k1}xf16> \n"
-        f"  %keyTensor = hal.tensor.import %key : !hal.buffer_view -> tensor<{shapes_scale.batch}x{shapes_scale.k2}x{shapes_scale.k1}xf16> \n"
-        f"  %valueTensor = hal.tensor.import %value : !hal.buffer_view -> tensor<{shapes_scale.batch}x{shapes_scale.k2}x{shapes_scale.n}xf16> \n"
-        f"  %resultTensor = hal.tensor.import %result : !hal.buffer_view -> tensor<{shapes_scale.batch}x{shapes_scale.m}x{shapes_scale.n}xf16> \n"
-        f"  %queryExt = arith.extf %queryTensor : tensor<{shapes_scale.batch}x{shapes_scale.m}x{shapes_scale.k1}xf16> to tensor<{shapes_scale.batch}x{shapes_scale.m}x{shapes_scale.k1}xf32> \n"
-        f"  %keyExt = arith.extf %keyTensor : tensor<{shapes_scale.batch}x{shapes_scale.k2}x{shapes_scale.k1}xf16> to tensor<{shapes_scale.batch}x{shapes_scale.k2}x{shapes_scale.k1}xf32> \n"
-        f"  %valueExt = arith.extf %valueTensor : tensor<{shapes_scale.batch}x{shapes_scale.k2}x{shapes_scale.n}xf16> to tensor<{shapes_scale.batch}x{shapes_scale.k2}x{shapes_scale.n}xf32> \n"
-        f"  %resultExt = arith.extf %resultTensor : tensor<{shapes_scale.batch}x{shapes_scale.m}x{shapes_scale.n}xf16> to tensor<{shapes_scale.batch}x{shapes_scale.m}x{shapes_scale.n}xf32> \n"
-        f"  %queryExtBufferView = hal.tensor.export %queryExt : tensor<{shapes_scale.batch}x{shapes_scale.m}x{shapes_scale.k1}xf32> -> !hal.buffer_view \n"
-        f"  %keyExtBufferView = hal.tensor.export %keyExt : tensor<{shapes_scale.batch}x{shapes_scale.k2}x{shapes_scale.k1}xf32> -> !hal.buffer_view \n"
-        f"  %valueExtBufferView = hal.tensor.export %valueExt : tensor<{shapes_scale.batch}x{shapes_scale.k2}x{shapes_scale.n}xf32> -> !hal.buffer_view \n"
-        f"  %resultExtBufferView = hal.tensor.export %resultExt : tensor<{shapes_scale.batch}x{shapes_scale.m}x{shapes_scale.n}xf32> -> !hal.buffer_view \n"
-        f"  call @attention_test.check_attention_results(%device, %batch, %m, %k1, %k2, %n, %queryExtBufferView, %keyExtBufferView, %valueExtBufferView, %resultExtBufferView) : (!hal.device, i64, i64, i64, i64, i64, !hal.buffer_view, !hal.buffer_view, !hal.buffer_view, !hal.buffer_view) -> ()\n"
-    )
-
-    op = op + "  return\n"
-    op = op + "}\n"
-
-    return TestCall(function=function, op=op)
-
-
-# Generates all output files' contents as strings.
-def generate(
-    query_type: QueryElemTypeId,
-    key_type: KeyElemTypeId,
-    value_type: ValueElemTypeId,
-    shapes_id: ShapesId,
-):
-    functions = {}
-    calls = []
-
-    for shape in get_test_shapes(shapes_id):
-        function = generate_function(
-            query_type,
-            key_type,
-            value_type,
-            shape,
-        )
-        if function.name not in functions:
-            functions[function.name] = function
-        calls.append(
-            generate_call(
-                function,
-                query_type,
-                key_type,
-                value_type,
-                shape,
-            )
-        )
-
-    return (functions, calls)
-
-
-def parse_arguments():
-    parser = argparse.ArgumentParser(description="Generator of e2e Attention tests")
-    parser.add_argument(
-        "--output_attention_mlir",
-        type=str,
-        help="Path of output .mlir file containing the generated Attention functions",
-        required=True,
-    )
-    parser.add_argument(
-        "--output_calls_mlir",
-        type=str,
-        help="Path of output .mlir file containing the calls",
-        required=True,
-    )
-    parser.add_argument(
-        "--query_type",
-        type=str,
-        choices=["f16"],
-        help="Numeric type of query tensors ",
-        required=True,
-    )
-    parser.add_argument(
-        "--key_type",
-        type=str,
-        choices=["f16"],
-        help="Numeric type of key tensors ",
-        required=True,
-    )
-    parser.add_argument(
-        "--value_type",
-        type=str,
-        choices=["f16"],
-        help="Numeric type of value tensors ",
-        required=True,
-    )
-    parser.add_argument(
-        "--shapes_scale",
-        type=str,
-        choices=[s.value for s in ShapesId],
-        help="Collection of tensor shapes to test",
-        required=True,
-    )
-    parser.add_argument(
-        "--requirements",
-        type=str,
-        help="Target requirements for this module. Comma-separated. As in -iree-llvmcpu-target-cpu-features. If the target device does not meet all of the requirements, the test will be skipped.",
-        required=False,
-    )
-    return parser.parse_args()
-
-
-def write_code_file(functions, filename):
-    with open(filename, "w") as file:
-        for function in functions.values():
-            file.write(function.definition + "\n")
-
-
-def write_calls_file(functions, calls, filename, requirements):
-    # Module-level reflection information used to control the test tool.
-    reflection = ""
-    if requirements:
-        reflection = (
-            "iree.reflection = {"
-            'target_features = "'
-            + ",".join([req.lstrip("+") for req in requirements.split(",")])
-            + '"'
-            "}"
-        )
-    module_definition = (
-        f"builtin.module @calls attributes {{\n" f"  {reflection}\n" f"}} {{\n\n"
-    )
-
-    # Declare the custom module that generates arguments.
-    module_definition = module_definition + (
-        "func.func private @attention_test.generate_random_tensor(%device: !hal.device, %dim0: i64, %dim1: i64, %dim2: i64, %element_type: i32, %seed: i32) -> !hal.buffer_view\n"
-        "func.func private @attention_test.check_attention_results(%device: !hal.device, %batch: i64, %m: i64, %k1: i64, %k2: i64, %n: i64, %query: !hal.buffer_view, %key: !hal.buffer_view, %value: !hal.buffer_view, %result: !hal.buffer_view)\n"
-        "\n"
-    )
-
-    # Declare the functions that will be called.
-    for function in functions.values():
-        module_definition = module_definition + function.import_declaration + "\n"
-    module_definition = module_definition + "\n"
-
-    # Emit the test cases for each call.
-    for call in calls:
-        module_definition = module_definition + call.op + "\n"
-
-    module_definition = module_definition + "\n}\n"
-
-    with open(filename, "w") as file:
-        file.write(module_definition)
-
-
-def main(args):
-    query_type = QueryElemTypeId(args.query_type)
-    key_type = KeyElemTypeId(args.key_type)
-    value_type = ValueElemTypeId(args.value_type)
-    shapes_id = ShapesId(args.shapes_scale)
-
-    (functions, calls) = generate(
-        query_type,
-        key_type,
-        value_type,
-        shapes_id,
-    )
-
-    write_code_file(functions, args.output_attention_mlir)
-    write_calls_file(
-        functions,
-        calls,
-        args.output_calls_mlir,
-        args.requirements,
-    )
-
-
-if __name__ == "__main__":
-    main(parse_arguments())
diff --git a/tools/testing/e2e/BUILD.bazel b/tools/testing/e2e/BUILD.bazel
index 3976279..0c510a9 100644
--- a/tools/testing/e2e/BUILD.bazel
+++ b/tools/testing/e2e/BUILD.bazel
@@ -68,22 +68,3 @@
         "//runtime/src/iree/vm:cc",
     ],
 )
-
-iree_runtime_cc_binary(
-    name = "iree-e2e-attention-test",
-    srcs = ["iree-e2e-attention-test.cc"],
-    deps = [
-        ":e2e_test_util",
-        "//runtime/src/iree/base",
-        "//runtime/src/iree/base/internal",
-        "//runtime/src/iree/base/internal:cpu",
-        "//runtime/src/iree/base/internal:flags",
-        "//runtime/src/iree/base/internal:path",
-        "//runtime/src/iree/hal",
-        "//runtime/src/iree/modules/hal",
-        "//runtime/src/iree/tooling:context_util",
-        "//runtime/src/iree/tooling:device_util",
-        "//runtime/src/iree/vm",
-        "//runtime/src/iree/vm:cc",
-    ],
-)
diff --git a/tools/testing/e2e/CMakeLists.txt b/tools/testing/e2e/CMakeLists.txt
index ece0c59..e4fc8fb 100644
--- a/tools/testing/e2e/CMakeLists.txt
+++ b/tools/testing/e2e/CMakeLists.txt
@@ -77,24 +77,4 @@
     iree::vm::cc
 )
 
-iree_cc_binary(
-  NAME
-    iree-e2e-attention-test
-  SRCS
-    "iree-e2e-attention-test.cc"
-  DEPS
-    ::e2e_test_util
-    iree::base
-    iree::base::internal
-    iree::base::internal::cpu
-    iree::base::internal::flags
-    iree::base::internal::path
-    iree::hal
-    iree::modules::hal
-    iree::tooling::context_util
-    iree::tooling::device_util
-    iree::vm
-    iree::vm::cc
-)
-
 ### BAZEL_TO_CMAKE_PRESERVES_ALL_CONTENT_BELOW_THIS_LINE ###
diff --git a/tools/testing/e2e/iree-e2e-attention-test.cc b/tools/testing/e2e/iree-e2e-attention-test.cc
deleted file mode 100644
index 4b0464b..0000000
--- a/tools/testing/e2e/iree-e2e-attention-test.cc
+++ /dev/null
@@ -1,486 +0,0 @@
-// Copyright 2024 The IREE Authors
-//
-// Licensed under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-
-#include <float.h>
-#include <math.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-#include "iree/base/api.h"
-#include "iree/base/internal/cpu.h"
-#include "iree/base/internal/flags.h"
-#include "iree/base/internal/math.h"
-#include "iree/base/internal/path.h"
-#include "iree/hal/api.h"
-#include "iree/modules/hal/module.h"
-#include "iree/tooling/context_util.h"
-#include "iree/tooling/device_util.h"
-#include "iree/vm/api.h"
-#include "iree/vm/native_module_cc.h"
-#include "tools/testing/e2e/test_utils.h"
-
-//===----------------------------------------------------------------------===//
-// Reference Attention
-//===----------------------------------------------------------------------===//
-
-// Helper for reference_attention.
-// Function to allocate and initialize tensors
-float* allocate_tensor(int dim1, int dim2, int dim3) {
-  const int size = dim1 * dim2 * dim3;
-  float* tensor = (float*)malloc(size * sizeof(float));
-  for (int i = 0; i < size; ++i) {
-    tensor[i] = 0.0f;
-  }
-  return tensor;
-}
-
-// Function to free allocated tensors
-void free_tensor(float* tensor) {
-  if (tensor != nullptr) free(tensor);
-}
-
-// Function to calculate 1D index for a 3D array
-int index_3d(int i, int j, int k, int dim2, int dim3) {
-  return i * dim2 * dim3 + j * dim3 + k;
-}
-
-static void reference_attention_f32_f32_f32_f32(
-    iree_hal_dim_t M, iree_hal_dim_t K1, iree_hal_dim_t K2, iree_hal_dim_t N,
-    iree_hal_dim_t B, const float* query_data, const float* key_data,
-    const float* value_data, float* result_data, iree_hal_dim_t b,
-    float* Attention) {
-  // Compute Q * K^T
-  for (int m = 0; m < M; ++m) {
-    for (int k2 = 0; k2 < K2; ++k2) {
-      float sum = 0.0;
-      for (int k1 = 0; k1 < K1; ++k1) {
-        int q_idx = index_3d(b, m, k1, M, K1);
-        int k_idx = index_3d(b, k2, k1, K2, K1);
-
-        sum += query_data[q_idx] * key_data[k_idx];
-      }
-      int att_idx = index_3d(0, m, k2, M, K2);
-      Attention[att_idx] = sum / sqrt(K1);  // Scale by sqrt(K1)
-    }
-  }
-
-  // Compute softmax on Attention
-  for (int m = 0; m < M; ++m) {
-    // Find the maximum value for the current sequence
-    float max_val = -FLT_MAX;
-    for (int k2 = 0; k2 < K2; ++k2) {
-      int att_idx = index_3d(0, m, k2, M, K2);
-      max_val = iree_max(max_val, Attention[att_idx]);
-    }
-
-    // Calculate the softmax denominator
-    float sum = 0.0f;
-    for (int k2 = 0; k2 < K2; ++k2) {
-      int att_idx = index_3d(0, m, k2, M, K2);
-      sum += exp(Attention[att_idx] - max_val);
-    }
-
-    // Apply softmax
-    for (int k2 = 0; k2 < K2; ++k2) {
-      int att_idx = index_3d(0, m, k2, M, K2);
-      Attention[att_idx] = exp(Attention[att_idx]) / sum;
-    }
-  }
-
-  // Compute Attention * V
-  for (int m = 0; m < M; ++m) {
-    for (int n = 0; n < N; ++n) {
-      float sum = 0.0;
-      for (int k2 = 0; k2 < K2; ++k2) {
-        int att_idx = index_3d(0, m, k2, M, K2);
-        int v_idx = index_3d(b, k2, n, K2, N);
-        sum += Attention[att_idx] * value_data[v_idx];
-      }
-      int o_idx = index_3d(b, m, n, M, N);
-      result_data[o_idx] = sum;
-    }
-  }
-}
-
-static iree_status_t reference_attention_element(
-    iree_hal_dim_t M, iree_hal_dim_t K1, iree_hal_dim_t K2, iree_hal_dim_t N,
-    iree_hal_dim_t B, iree_hal_element_type_t query_elem_type,
-    iree_hal_element_type_t key_elem_type,
-    iree_hal_element_type_t value_elem_type, void* query_data, void* key_data,
-    void* value_data, void* actual_data, void* result_data, iree_hal_dim_t b,
-    float* Attention) {
-  if (query_elem_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32 &&
-      key_elem_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32 &&
-      value_elem_type == IREE_HAL_ELEMENT_TYPE_FLOAT_32) {
-    reference_attention_f32_f32_f32_f32(
-        M, K1, K2, N, B, (const float*)query_data, (const float*)key_data,
-        (const float*)value_data, (float*)result_data, b, Attention);
-
-  } else {
-    return iree_make_status(
-        IREE_STATUS_INVALID_ARGUMENT,
-        "unhandled combination of element types in attention");
-  }
-  return iree_ok_status();
-}
-
-// Reference attention implementation, used to compare attention results
-// against.
-static iree_status_t reference_attention(
-    iree_hal_dim_t B, iree_hal_dim_t M, iree_hal_dim_t K1, iree_hal_dim_t K2,
-    iree_hal_dim_t N, iree_hal_element_type_t query_elem_type,
-    iree_hal_element_type_t key_elem_type,
-    iree_hal_element_type_t value_elem_type, iree_byte_span_t query_contents,
-    iree_byte_span_t key_contents, iree_byte_span_t value_contents,
-    iree_byte_span_t actual_contents, iree_byte_span_t result_contents,
-    int compute_every) {
-  IREE_TRACE_ZONE_BEGIN(z0);
-  IREE_TRACE_ZONE_APPEND_VALUE_I64(z0, B);
-  IREE_TRACE_ZONE_APPEND_VALUE_I64(z0, M);
-  IREE_TRACE_ZONE_APPEND_VALUE_I64(z0, K1);
-  IREE_TRACE_ZONE_APPEND_VALUE_I64(z0, K2);
-  IREE_TRACE_ZONE_APPEND_VALUE_I64(z0, N);
-
-  iree_host_size_t count = 0;
-  float* Attention = allocate_tensor(1, M, K2);
-  for (iree_hal_dim_t b = 0; b < B; ++b) {
-    if (++count < compute_every) continue;
-    count = 0;
-    IREE_RETURN_AND_END_ZONE_IF_ERROR(
-        z0,
-        reference_attention_element(
-            M, K1, K2, N, B, query_elem_type, key_elem_type, value_elem_type,
-            query_contents.data, key_contents.data, value_contents.data,
-            actual_contents.data, result_contents.data, b, Attention));
-  }
-  free_tensor(Attention);
-
-  IREE_TRACE_ZONE_END(z0);
-  return iree_ok_status();
-}
-//===----------------------------------------------------------------------===//
-// Attention comparison/logging
-//===----------------------------------------------------------------------===//
-
-typedef struct {
-  iree_allocator_t host_allocator;
-  iree_hal_dim_t b;
-  iree_hal_dim_t m;
-  iree_hal_dim_t k1;
-  iree_hal_dim_t k2;
-  iree_hal_dim_t n;
-  iree_hal_element_type_t query_elem_type;
-  iree_hal_element_type_t key_elem_type;
-  iree_hal_element_type_t value_elem_type;
-  iree_hal_element_type_t result_elem_type;
-  iree_byte_span_t query_contents;
-  iree_byte_span_t key_contents;
-  iree_byte_span_t value_contents;
-  iree_byte_span_t actual_contents;
-  iree_byte_span_t expected_contents;
-} attention_results_t;
-
-static void attention_results_deinitialize(attention_results_t* results);
-
-static iree_status_t attention_results_initialize(
-    iree_hal_device_t* device, iree_hal_dim_t b_size, iree_hal_dim_t m_size,
-    iree_hal_dim_t k1_size, iree_hal_dim_t k2_size, iree_hal_dim_t n_size,
-    iree_hal_buffer_view_t* query, iree_hal_buffer_view_t* key,
-    iree_hal_buffer_view_t* value, iree_hal_buffer_view_t* result,
-    iree_allocator_t host_allocator, attention_results_t* out_results) {
-  IREE_TRACE_ZONE_BEGIN(z0);
-
-  memset(out_results, 0, sizeof(*out_results));
-  out_results->host_allocator = host_allocator;
-
-  out_results->b = b_size;
-  out_results->m = m_size;
-  out_results->k1 = k1_size;
-  out_results->k2 = k2_size;
-  out_results->n = n_size;
-
-  out_results->query_elem_type = iree_hal_buffer_view_element_type(query);
-  out_results->key_elem_type = iree_hal_buffer_view_element_type(key);
-  out_results->value_elem_type = iree_hal_buffer_view_element_type(value);
-  out_results->result_elem_type = iree_hal_buffer_view_element_type(result);
-
-  iree_hal_buffer_t* query_buffer = iree_hal_buffer_view_buffer(query);
-  iree_hal_buffer_t* key_buffer = iree_hal_buffer_view_buffer(key);
-  iree_hal_buffer_t* value_buffer = iree_hal_buffer_view_buffer(value);
-  iree_hal_buffer_t* result_buffer = iree_hal_buffer_view_buffer(result);
-
-  iree_status_t status = iree_ok_status();
-
-  if (iree_status_is_ok(status)) {
-    out_results->query_contents.data_length =
-        iree_hal_buffer_byte_length(query_buffer);
-    status = iree_allocator_malloc(host_allocator,
-                                   out_results->query_contents.data_length,
-                                   (void**)&out_results->query_contents.data);
-  }
-  if (iree_status_is_ok(status)) {
-    status = iree_hal_device_transfer_d2h(
-        device, query_buffer, 0, out_results->query_contents.data,
-        out_results->query_contents.data_length,
-        IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT, iree_infinite_timeout());
-  }
-  if (iree_status_is_ok(status)) {
-    out_results->key_contents.data_length =
-        iree_hal_buffer_byte_length(key_buffer);
-    status = iree_allocator_malloc(host_allocator,
-                                   out_results->key_contents.data_length,
-                                   (void**)&out_results->key_contents.data);
-  }
-  if (iree_status_is_ok(status)) {
-    status = iree_hal_device_transfer_d2h(
-        device, key_buffer, 0, out_results->key_contents.data,
-        out_results->key_contents.data_length,
-        IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT, iree_infinite_timeout());
-  }
-  if (iree_status_is_ok(status)) {
-    out_results->value_contents.data_length =
-        iree_hal_buffer_byte_length(value_buffer);
-    status = iree_allocator_malloc(host_allocator,
-                                   out_results->value_contents.data_length,
-                                   (void**)&out_results->value_contents.data);
-  }
-
-  if (iree_status_is_ok(status)) {
-    status = iree_hal_device_transfer_d2h(
-        device, value_buffer, 0, out_results->value_contents.data,
-        out_results->value_contents.data_length,
-        IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT, iree_infinite_timeout());
-  }
-  if (iree_status_is_ok(status)) {
-    out_results->actual_contents.data_length =
-        iree_hal_buffer_byte_length(result_buffer);
-    status = iree_allocator_malloc(host_allocator,
-                                   out_results->actual_contents.data_length,
-                                   (void**)&out_results->actual_contents.data);
-  }
-  if (iree_status_is_ok(status)) {
-    status = iree_hal_device_transfer_d2h(
-        device, result_buffer, 0, out_results->actual_contents.data,
-        out_results->actual_contents.data_length,
-        IREE_HAL_TRANSFER_BUFFER_FLAG_DEFAULT, iree_infinite_timeout());
-  }
-  if (iree_status_is_ok(status)) {
-    out_results->expected_contents.data_length =
-        iree_hal_buffer_byte_length(result_buffer);
-    status = iree_allocator_malloc(
-        host_allocator, out_results->expected_contents.data_length,
-        (void**)&out_results->expected_contents.data);
-  }
-  if (!iree_status_is_ok(status)) {
-    attention_results_deinitialize(out_results);
-  }
-  IREE_TRACE_ZONE_END(z0);
-  return status;
-}
-
-static void attention_results_deinitialize(attention_results_t* results) {
-  IREE_TRACE_ZONE_BEGIN(z0);
-  iree_allocator_free(results->host_allocator, results->query_contents.data);
-  iree_allocator_free(results->host_allocator, results->key_contents.data);
-  iree_allocator_free(results->host_allocator, results->value_contents.data);
-  iree_allocator_free(results->host_allocator, results->actual_contents.data);
-  iree_allocator_free(results->host_allocator, results->expected_contents.data);
-
-  IREE_TRACE_ZONE_END(z0);
-}
-
-// Helper for check_attention_results: the actual interesting part once we've
-// obtained and validated the {b,m,k1,k2,n}_size values. On error, detailed
-// logging is written to |file| if it is not NULL.
-static iree_status_t check_attention_results_impl(
-    FILE* file, const attention_results_t* results, int check_every) {
-  IREE_TRACE_ZONE_BEGIN(z0);
-
-  IREE_RETURN_AND_END_ZONE_IF_ERROR(
-      z0, reference_attention(results->b, results->m, results->k1, results->k2,
-                              results->n, results->query_elem_type,
-                              results->key_elem_type, results->value_elem_type,
-                              results->query_contents, results->key_contents,
-                              results->value_contents, results->actual_contents,
-                              results->expected_contents, check_every));
-
-  IREE_TRACE_ZONE_END(z0);
-  return iree_ok_status();
-}
-
-// Given an actual attention's inputs and output (all host-local), uses a
-// reference attention implementation on the same inputs to check if the output
-// is correct. On error, detailed logging is written to |file| if it is not
-// NULL.
-static iree_status_t check_attention_results(
-    FILE* file, const attention_results_t* results) {
-  IREE_TRACE_ZONE_BEGIN(z0);
-  // TODO: Increase the check every param to reduce the number of comparisons.
-  int check_every = 1;
-  iree_status_t status =
-      check_attention_results_impl(file, results, check_every);
-  if (!iree_status_is_ok(status) && check_every > 1) {
-    // If we got a failure with check_every>1, that didn't log a useful
-    // numerical summary, as most of the reference matrix entries hadn't been
-    // computed. Rerun now with check_every=1 to get that numerical logging.
-    iree_status_ignore(status);
-    status = check_attention_results_impl(file, results, 1);
-  }
-  IREE_TRACE_ZONE_END(z0);
-  return status;
-}
-
-//===----------------------------------------------------------------------===//
-// `attention_test` custom module
-//===----------------------------------------------------------------------===//
-// This uses the C++ wrapper to keep things simple. Though easier to use it's
-// got additional overhead/code-size bloat that doesn't matter in a test like
-// this. Making a C module builder API that removes the boilerplate there is TBD
-// so this file is written in C besides this module so that we can swap it back
-// to being pure C in the future.
-
-namespace iree {
-
-class AttentionTestModuleState final {
- public:
-  explicit AttentionTestModuleState(iree_allocator_t host_allocator)
-      : host_allocator_(host_allocator) {}
-  ~AttentionTestModuleState() = default;
-
-  // Fills the destination span with pseudorandom values of the given
-  // |element_type|. The given |seed| is passed to the pseudorandom generator.
-  // The pseudorandom values are reproducible both across runs and across
-  // machines.
-  StatusOr<vm::ref<iree_hal_buffer_view_t>> GenerateRandom3dTensor(
-      const vm::ref<iree_hal_device_t> device, int64_t dim0, int64_t dim1,
-      int64_t dim2, iree_hal_element_type_t element_type, int32_t seed) {
-    iree_hal_dim_t dims[3] = {
-        (iree_hal_dim_t)dim0,
-        (iree_hal_dim_t)dim1,
-        (iree_hal_dim_t)dim2,
-    };
-    iree_hal_buffer_params_t buffer_params = {0};
-    buffer_params.usage = IREE_HAL_BUFFER_USAGE_DEFAULT;
-    buffer_params.access = IREE_HAL_MEMORY_ACCESS_ALL;
-    buffer_params.type = IREE_HAL_MEMORY_TYPE_OPTIMAL_FOR_DEVICE;
-    vm::ref<iree_hal_buffer_view_t> result_view;
-    struct callback_state_t {
-      iree_hal_element_type_t element_type;
-      int32_t seed;
-    } callback_state = {
-        element_type,
-        seed,
-    };
-    IREE_RETURN_IF_ERROR(iree_hal_buffer_view_generate_buffer(
-        device.get(), iree_hal_device_allocator(device.get()),
-        IREE_ARRAYSIZE(dims), dims, element_type,
-        IREE_HAL_ENCODING_TYPE_DENSE_ROW_MAJOR, buffer_params,
-        +[](iree_hal_buffer_mapping_t* mapping, void* user_data) {
-          callback_state_t callback_state = *(callback_state_t*)user_data;
-          iree_byte_span_t span = mapping->contents;
-          // Generate "uniform" integer-valued numbers in the range [min, max].
-          int32_t min = 0;
-          int32_t max = 0;
-          iree_test_utils_get_min_max_for_element_type(
-              callback_state.element_type, &min, &max);
-          uint32_t range = (max - min + 1);
-          iree_host_size_t element_byte_count =
-              iree_hal_element_dense_byte_count(callback_state.element_type);
-          uint8_t* data_end = span.data + span.data_length;
-          uint32_t state = callback_state.seed;
-          for (uint8_t* data = span.data; data < data_end;
-               data += element_byte_count) {
-            int32_t value =
-                (int32_t)iree_test_utils_pseudorandom_range(&state, range) +
-                min;
-            iree_test_utils_write_element(callback_state.element_type, value,
-                                          data);
-          }
-          return iree_ok_status();
-        },
-        &callback_state, &result_view));
-    return std::move(result_view);
-  }
-
-  Status CheckAttentionResults(
-      const vm::ref<iree_hal_device_t> device, int64_t b, int64_t m, int64_t k1,
-      int64_t k2, int64_t n, const vm::ref<iree_hal_buffer_view_t> query,
-      const vm::ref<iree_hal_buffer_view_t> key,
-      const vm::ref<iree_hal_buffer_view_t> value,
-      const vm::ref<iree_hal_buffer_view_t> actual_result) {
-    attention_results_t results = {};
-    IREE_RETURN_IF_ERROR(attention_results_initialize(
-        device.get(), (iree_hal_dim_t)b, (iree_hal_dim_t)m, (iree_hal_dim_t)k1,
-        (iree_hal_dim_t)k2, (iree_hal_dim_t)n, query.get(), key.get(),
-        value.get(), actual_result.get(), host_allocator_, &results));
-    iree_status_t status = check_attention_results(stderr, &results);
-    attention_results_deinitialize(&results);
-    return status;
-  }
-
- private:
-  iree_allocator_t host_allocator_;
-};
-
-static const vm::NativeFunction<AttentionTestModuleState>
-    kAttentionTestModuleFunctions[] = {
-        vm::MakeNativeFunction(
-            "generate_random_tensor",
-            &AttentionTestModuleState::GenerateRandom3dTensor),
-        vm::MakeNativeFunction(
-            "check_attention_results",
-            &AttentionTestModuleState::CheckAttentionResults),
-};
-
-struct AttentionTestModule final
-    : public vm::NativeModule<AttentionTestModuleState> {
-  using vm::NativeModule<AttentionTestModuleState>::NativeModule;
-  StatusOr<std::unique_ptr<AttentionTestModuleState>> CreateState(
-      iree_allocator_t host_allocator) override {
-    return std::make_unique<AttentionTestModuleState>(host_allocator);
-  }
-};
-
-}  // namespace iree
-
-static iree_status_t attention_test_module_create(
-    iree_vm_instance_t* instance, iree_allocator_t host_allocator,
-    iree_vm_module_t** out_module) {
-  IREE_ASSERT_ARGUMENT(out_module);
-  *out_module = NULL;
-  auto module = std::make_unique<iree::AttentionTestModule>(
-      "attention_test", /*version=*/0, instance, host_allocator,
-      iree::span<
-          const iree::vm::NativeFunction<iree::AttentionTestModuleState>>(
-          iree::kAttentionTestModuleFunctions));
-  *out_module = module.release()->interface();
-  return iree_ok_status();
-}
-
-int main(int argc, char** argv) {
-  IREE_TRACE_APP_ENTER();
-
-  iree_flags_parse_checked(IREE_FLAGS_PARSE_MODE_DEFAULT, &argc, &argv);
-  if (argc != 1) {
-    fprintf(stderr, "use --module= flags to specify the modules to run\n");
-    IREE_TRACE_APP_EXIT(EXIT_FAILURE);
-    return EXIT_FAILURE;
-  }
-
-  iree_status_t status = iree_test_utils_load_and_run_e2e_tests(
-      iree_allocator_system(), attention_test_module_create);
-  int exit_code = EXIT_SUCCESS;
-  if (!iree_status_is_ok(status)) {
-    iree_status_fprint(stderr, status);
-    bool is_unavailable = iree_status_is_unavailable(status);
-    iree_status_free(status);
-    exit_code = is_unavailable ? EXIT_SUCCESS : EXIT_FAILURE;
-  }
-
-  IREE_TRACE_APP_EXIT(exit_code);
-  return exit_code;
-}