blob: 88b2295b953f5910c38b70b12fa3786a0c590f10 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "hw/ip/aes/model/aes_modes.h"
#include "sw/device/lib/base/memory.h"
#include "sw/device/lib/base/mmio.h"
#include "sw/device/lib/dif/dif_aes.h"
#include "sw/device/lib/runtime/log.h"
#include "sw/device/lib/testing/aes_testutils.h"
#include "sw/device/lib/testing/test_framework/check.h"
#include "sw/device/lib/testing/test_framework/ottf_main.h"
#include "hw/top_earlgrey/sw/autogen/top_earlgrey.h"
#define TIMEOUT (1000 * 1000)
// The mask share, used to mask kKey. Note that the masking should not be done
// manually. Software is expected to get the key in two shares right from the
// beginning.
static const uint8_t kKeyShare1[] = {
0x0f, 0x1f, 0x2f, 0x3F, 0x4f, 0x5f, 0x6f, 0x7f, 0x8f, 0x9f, 0xaf,
0xbf, 0xcf, 0xdf, 0xef, 0xff, 0x0a, 0x1a, 0x2a, 0x3a, 0x4a, 0x5a,
0x6a, 0x7a, 0x8a, 0x9a, 0xaa, 0xba, 0xca, 0xda, 0xea, 0xfa,
};
OTTF_DEFINE_TEST_CONFIG();
bool test_main(void) {
dif_aes_t aes;
// Initialise AES.
CHECK_DIF_OK(
dif_aes_init(mmio_region_from_addr(TOP_EARLGREY_AES_BASE_ADDR), &aes));
CHECK_DIF_OK(dif_aes_reset(&aes));
// Mask the key. Note that this should not be done manually. Software is
// expected to get the key in two shares right from the beginning.
uint8_t key_share0[sizeof(kAesModesKey256)];
for (int i = 0; i < sizeof(kAesModesKey256); ++i) {
key_share0[i] = kAesModesKey256[i] ^ kKeyShare1[i];
}
// "Convert" key share byte arrays to `dif_aes_key_share_t`.
dif_aes_key_share_t key;
memcpy(key.share0, key_share0, sizeof(key.share0));
memcpy(key.share1, kKeyShare1, sizeof(key.share1));
// Setup ECB encryption transaction.
dif_aes_transaction_t transaction = {
.operation = kDifAesOperationEncrypt,
.mode = kDifAesModeEcb,
.key_len = kDifAesKey256,
.key_provider = kDifAesKeySoftwareProvided,
.mask_reseeding = kDifAesReseedPerBlock,
.manual_operation = kDifAesManualOperationAuto,
.reseed_on_key_change = false,
.ctrl_aux_lock = false,
};
CHECK_DIF_OK(dif_aes_start(&aes, &transaction, &key, NULL));
// "Convert" plain data byte arrays to `dif_aes_data_t`.
dif_aes_data_t in_data_plain;
memcpy(in_data_plain.data, kAesModesPlainText, sizeof(in_data_plain.data));
// Load the plain text to trigger the encryption operation.
AES_TESTUTILS_WAIT_FOR_STATUS(&aes, kDifAesStatusInputReady, true, TIMEOUT);
CHECK_DIF_OK(dif_aes_load_data(&aes, in_data_plain));
// Read out the produced cipher text.
dif_aes_data_t out_data;
AES_TESTUTILS_WAIT_FOR_STATUS(&aes, kDifAesStatusOutputValid, true, TIMEOUT);
CHECK_DIF_OK(dif_aes_read_output(&aes, &out_data));
// Finish the ECB encryption transaction.
CHECK_DIF_OK(dif_aes_end(&aes));
CHECK_ARRAYS_EQ((uint8_t *)out_data.data, kAesModesCipherTextEcb256,
sizeof(out_data.data));
// Setup ECB decryption transaction.
transaction.operation = kDifAesOperationDecrypt;
CHECK_DIF_OK(dif_aes_start(&aes, &transaction, &key, NULL));
// Load the previously produced cipher text to start the decryption operation.
AES_TESTUTILS_WAIT_FOR_STATUS(&aes, kDifAesStatusInputReady, true, TIMEOUT);
CHECK_DIF_OK(dif_aes_load_data(&aes, out_data));
// Read out the produced plain text.
AES_TESTUTILS_WAIT_FOR_STATUS(&aes, kDifAesStatusOutputValid, true, TIMEOUT);
CHECK_DIF_OK(dif_aes_read_output(&aes, &out_data));
// Finish the ECB encryption transaction.
CHECK_DIF_OK(dif_aes_end(&aes));
CHECK_ARRAYS_EQ((uint8_t *)out_data.data, kAesModesPlainText,
sizeof(out_data.data));
return true;
}