blob: 7f83e04e4cf36428417ed8eb9a6de33b78177ee7 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module hmac_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// Output port for window
output tlul_pkg::tl_h2d_t tl_win_o,
input tlul_pkg::tl_d2h_t tl_win_i,
// To HW
output hmac_reg_pkg::hmac_reg2hw_t reg2hw, // Write
input hmac_reg_pkg::hmac_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import hmac_reg_pkg::* ;
localparam int AW = 12;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(tl_i),
.err_o(intg_err)
);
// also check for spurious write enables
logic reg_we_err;
logic [26:0] reg_we_check;
prim_reg_we_check #(
.OneHotWidth(27)
) u_prim_reg_we_check (
.clk_i(clk_i),
.rst_ni(rst_ni),
.oh_i (reg_we_check),
.en_i (reg_we && !addrmiss),
.err_o (reg_we_err)
);
logic err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_q <= '0;
end else if (intg_err || reg_we_err) begin
err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = err_q | intg_err | reg_we_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(tl_o)
);
tlul_pkg::tl_h2d_t tl_socket_h2d [2];
tlul_pkg::tl_d2h_t tl_socket_d2h [2];
logic [0:0] reg_steer;
// socket_1n connection
assign tl_reg_h2d = tl_socket_h2d[1];
assign tl_socket_d2h[1] = tl_reg_d2h;
assign tl_win_o = tl_socket_h2d[0];
assign tl_socket_d2h[0] = tl_win_i;
// Create Socket_1n
tlul_socket_1n #(
.N (2),
.HReqPass (1'b1),
.HRspPass (1'b1),
.DReqPass ({2{1'b1}}),
.DRspPass ({2{1'b1}}),
.HReqDepth (4'h0),
.HRspDepth (4'h0),
.DReqDepth ({2{4'h0}}),
.DRspDepth ({2{4'h0}}),
.ExplicitErrs (1'b0)
) u_socket (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_h_i (tl_i),
.tl_h_o (tl_o_pre),
.tl_d_o (tl_socket_h2d),
.tl_d_i (tl_socket_d2h),
.dev_select_i (reg_steer)
);
// Create steering logic
always_comb begin
reg_steer =
tl_i.a_address[AW-1:0] inside {[2048:4095]} ? 1'd0 :
// Default set to register
1'd1;
// Override this in case of an integrity error
if (intg_err) begin
reg_steer = 1'd1;
end
end
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.en_ifetch_i(prim_mubi_pkg::MuBi4False),
.intg_error_o(),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
// cdc oversampling signals
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic intr_state_we;
logic intr_state_hmac_done_qs;
logic intr_state_hmac_done_wd;
logic intr_state_fifo_empty_qs;
logic intr_state_fifo_empty_wd;
logic intr_state_hmac_err_qs;
logic intr_state_hmac_err_wd;
logic intr_enable_we;
logic intr_enable_hmac_done_qs;
logic intr_enable_hmac_done_wd;
logic intr_enable_fifo_empty_qs;
logic intr_enable_fifo_empty_wd;
logic intr_enable_hmac_err_qs;
logic intr_enable_hmac_err_wd;
logic intr_test_we;
logic intr_test_hmac_done_wd;
logic intr_test_fifo_empty_wd;
logic intr_test_hmac_err_wd;
logic alert_test_we;
logic alert_test_wd;
logic cfg_re;
logic cfg_we;
logic cfg_hmac_en_qs;
logic cfg_hmac_en_wd;
logic cfg_sha_en_qs;
logic cfg_sha_en_wd;
logic cfg_endian_swap_qs;
logic cfg_endian_swap_wd;
logic cfg_digest_swap_qs;
logic cfg_digest_swap_wd;
logic cmd_we;
logic cmd_hash_start_wd;
logic cmd_hash_process_wd;
logic status_re;
logic status_fifo_empty_qs;
logic status_fifo_full_qs;
logic [4:0] status_fifo_depth_qs;
logic [31:0] err_code_qs;
logic wipe_secret_we;
logic [31:0] wipe_secret_wd;
logic key_0_we;
logic [31:0] key_0_wd;
logic key_1_we;
logic [31:0] key_1_wd;
logic key_2_we;
logic [31:0] key_2_wd;
logic key_3_we;
logic [31:0] key_3_wd;
logic key_4_we;
logic [31:0] key_4_wd;
logic key_5_we;
logic [31:0] key_5_wd;
logic key_6_we;
logic [31:0] key_6_wd;
logic key_7_we;
logic [31:0] key_7_wd;
logic digest_0_re;
logic [31:0] digest_0_qs;
logic digest_1_re;
logic [31:0] digest_1_qs;
logic digest_2_re;
logic [31:0] digest_2_qs;
logic digest_3_re;
logic [31:0] digest_3_qs;
logic digest_4_re;
logic [31:0] digest_4_qs;
logic digest_5_re;
logic [31:0] digest_5_qs;
logic digest_6_re;
logic [31:0] digest_6_qs;
logic digest_7_re;
logic [31:0] digest_7_qs;
logic [31:0] msg_length_lower_qs;
logic [31:0] msg_length_upper_qs;
// Register instances
// R[intr_state]: V(False)
// F[hmac_done]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state_hmac_done (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_hmac_done_wd),
// from internal hardware
.de (hw2reg.intr_state.hmac_done.de),
.d (hw2reg.intr_state.hmac_done.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.hmac_done.q),
.ds (),
// to register interface (read)
.qs (intr_state_hmac_done_qs)
);
// F[fifo_empty]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state_fifo_empty (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_fifo_empty_wd),
// from internal hardware
.de (hw2reg.intr_state.fifo_empty.de),
.d (hw2reg.intr_state.fifo_empty.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.fifo_empty.q),
.ds (),
// to register interface (read)
.qs (intr_state_fifo_empty_qs)
);
// F[hmac_err]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state_hmac_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state_we),
.wd (intr_state_hmac_err_wd),
// from internal hardware
.de (hw2reg.intr_state.hmac_err.de),
.d (hw2reg.intr_state.hmac_err.d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state.hmac_err.q),
.ds (),
// to register interface (read)
.qs (intr_state_hmac_err_qs)
);
// R[intr_enable]: V(False)
// F[hmac_done]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable_hmac_done (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_hmac_done_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.hmac_done.q),
.ds (),
// to register interface (read)
.qs (intr_enable_hmac_done_qs)
);
// F[fifo_empty]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable_fifo_empty (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_fifo_empty_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.fifo_empty.q),
.ds (),
// to register interface (read)
.qs (intr_enable_fifo_empty_qs)
);
// F[hmac_err]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable_hmac_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable_we),
.wd (intr_enable_hmac_err_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable.hmac_err.q),
.ds (),
// to register interface (read)
.qs (intr_enable_hmac_err_qs)
);
// R[intr_test]: V(True)
logic intr_test_qe;
logic [2:0] intr_test_flds_we;
assign intr_test_qe = &intr_test_flds_we;
// F[hmac_done]: 0:0
prim_subreg_ext #(
.DW (1)
) u_intr_test_hmac_done (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_hmac_done_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[0]),
.q (reg2hw.intr_test.hmac_done.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.hmac_done.qe = intr_test_qe;
// F[fifo_empty]: 1:1
prim_subreg_ext #(
.DW (1)
) u_intr_test_fifo_empty (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_fifo_empty_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[1]),
.q (reg2hw.intr_test.fifo_empty.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.fifo_empty.qe = intr_test_qe;
// F[hmac_err]: 2:2
prim_subreg_ext #(
.DW (1)
) u_intr_test_hmac_err (
.re (1'b0),
.we (intr_test_we),
.wd (intr_test_hmac_err_wd),
.d ('0),
.qre (),
.qe (intr_test_flds_we[2]),
.q (reg2hw.intr_test.hmac_err.q),
.ds (),
.qs ()
);
assign reg2hw.intr_test.hmac_err.qe = intr_test_qe;
// R[alert_test]: V(True)
logic alert_test_qe;
logic [0:0] alert_test_flds_we;
assign alert_test_qe = &alert_test_flds_we;
prim_subreg_ext #(
.DW (1)
) u_alert_test (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[0]),
.q (reg2hw.alert_test.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.qe = alert_test_qe;
// R[cfg]: V(True)
logic cfg_qe;
logic [3:0] cfg_flds_we;
assign cfg_qe = &cfg_flds_we;
// F[hmac_en]: 0:0
prim_subreg_ext #(
.DW (1)
) u_cfg_hmac_en (
.re (cfg_re),
.we (cfg_we),
.wd (cfg_hmac_en_wd),
.d (hw2reg.cfg.hmac_en.d),
.qre (),
.qe (cfg_flds_we[0]),
.q (reg2hw.cfg.hmac_en.q),
.ds (),
.qs (cfg_hmac_en_qs)
);
assign reg2hw.cfg.hmac_en.qe = cfg_qe;
// F[sha_en]: 1:1
prim_subreg_ext #(
.DW (1)
) u_cfg_sha_en (
.re (cfg_re),
.we (cfg_we),
.wd (cfg_sha_en_wd),
.d (hw2reg.cfg.sha_en.d),
.qre (),
.qe (cfg_flds_we[1]),
.q (reg2hw.cfg.sha_en.q),
.ds (),
.qs (cfg_sha_en_qs)
);
assign reg2hw.cfg.sha_en.qe = cfg_qe;
// F[endian_swap]: 2:2
prim_subreg_ext #(
.DW (1)
) u_cfg_endian_swap (
.re (cfg_re),
.we (cfg_we),
.wd (cfg_endian_swap_wd),
.d (hw2reg.cfg.endian_swap.d),
.qre (),
.qe (cfg_flds_we[2]),
.q (reg2hw.cfg.endian_swap.q),
.ds (),
.qs (cfg_endian_swap_qs)
);
assign reg2hw.cfg.endian_swap.qe = cfg_qe;
// F[digest_swap]: 3:3
prim_subreg_ext #(
.DW (1)
) u_cfg_digest_swap (
.re (cfg_re),
.we (cfg_we),
.wd (cfg_digest_swap_wd),
.d (hw2reg.cfg.digest_swap.d),
.qre (),
.qe (cfg_flds_we[3]),
.q (reg2hw.cfg.digest_swap.q),
.ds (),
.qs (cfg_digest_swap_qs)
);
assign reg2hw.cfg.digest_swap.qe = cfg_qe;
// R[cmd]: V(True)
logic cmd_qe;
logic [1:0] cmd_flds_we;
assign cmd_qe = &cmd_flds_we;
// F[hash_start]: 0:0
prim_subreg_ext #(
.DW (1)
) u_cmd_hash_start (
.re (1'b0),
.we (cmd_we),
.wd (cmd_hash_start_wd),
.d ('0),
.qre (),
.qe (cmd_flds_we[0]),
.q (reg2hw.cmd.hash_start.q),
.ds (),
.qs ()
);
assign reg2hw.cmd.hash_start.qe = cmd_qe;
// F[hash_process]: 1:1
prim_subreg_ext #(
.DW (1)
) u_cmd_hash_process (
.re (1'b0),
.we (cmd_we),
.wd (cmd_hash_process_wd),
.d ('0),
.qre (),
.qe (cmd_flds_we[1]),
.q (reg2hw.cmd.hash_process.q),
.ds (),
.qs ()
);
assign reg2hw.cmd.hash_process.qe = cmd_qe;
// R[status]: V(True)
// F[fifo_empty]: 0:0
prim_subreg_ext #(
.DW (1)
) u_status_fifo_empty (
.re (status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fifo_empty.d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (status_fifo_empty_qs)
);
// F[fifo_full]: 1:1
prim_subreg_ext #(
.DW (1)
) u_status_fifo_full (
.re (status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fifo_full.d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (status_fifo_full_qs)
);
// F[fifo_depth]: 8:4
prim_subreg_ext #(
.DW (5)
) u_status_fifo_depth (
.re (status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.status.fifo_depth.d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (status_fifo_depth_qs)
);
// R[err_code]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (32'h0)
) u_err_code (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.err_code.de),
.d (hw2reg.err_code.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (err_code_qs)
);
// R[wipe_secret]: V(True)
logic wipe_secret_qe;
logic [0:0] wipe_secret_flds_we;
assign wipe_secret_qe = &wipe_secret_flds_we;
prim_subreg_ext #(
.DW (32)
) u_wipe_secret (
.re (1'b0),
.we (wipe_secret_we),
.wd (wipe_secret_wd),
.d ('0),
.qre (),
.qe (wipe_secret_flds_we[0]),
.q (reg2hw.wipe_secret.q),
.ds (),
.qs ()
);
assign reg2hw.wipe_secret.qe = wipe_secret_qe;
// Subregister 0 of Multireg key
// R[key_0]: V(True)
logic key_0_qe;
logic [0:0] key_0_flds_we;
assign key_0_qe = &key_0_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_0 (
.re (1'b0),
.we (key_0_we),
.wd (key_0_wd),
.d (hw2reg.key[0].d),
.qre (),
.qe (key_0_flds_we[0]),
.q (reg2hw.key[0].q),
.ds (),
.qs ()
);
assign reg2hw.key[0].qe = key_0_qe;
// Subregister 1 of Multireg key
// R[key_1]: V(True)
logic key_1_qe;
logic [0:0] key_1_flds_we;
assign key_1_qe = &key_1_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_1 (
.re (1'b0),
.we (key_1_we),
.wd (key_1_wd),
.d (hw2reg.key[1].d),
.qre (),
.qe (key_1_flds_we[0]),
.q (reg2hw.key[1].q),
.ds (),
.qs ()
);
assign reg2hw.key[1].qe = key_1_qe;
// Subregister 2 of Multireg key
// R[key_2]: V(True)
logic key_2_qe;
logic [0:0] key_2_flds_we;
assign key_2_qe = &key_2_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_2 (
.re (1'b0),
.we (key_2_we),
.wd (key_2_wd),
.d (hw2reg.key[2].d),
.qre (),
.qe (key_2_flds_we[0]),
.q (reg2hw.key[2].q),
.ds (),
.qs ()
);
assign reg2hw.key[2].qe = key_2_qe;
// Subregister 3 of Multireg key
// R[key_3]: V(True)
logic key_3_qe;
logic [0:0] key_3_flds_we;
assign key_3_qe = &key_3_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_3 (
.re (1'b0),
.we (key_3_we),
.wd (key_3_wd),
.d (hw2reg.key[3].d),
.qre (),
.qe (key_3_flds_we[0]),
.q (reg2hw.key[3].q),
.ds (),
.qs ()
);
assign reg2hw.key[3].qe = key_3_qe;
// Subregister 4 of Multireg key
// R[key_4]: V(True)
logic key_4_qe;
logic [0:0] key_4_flds_we;
assign key_4_qe = &key_4_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_4 (
.re (1'b0),
.we (key_4_we),
.wd (key_4_wd),
.d (hw2reg.key[4].d),
.qre (),
.qe (key_4_flds_we[0]),
.q (reg2hw.key[4].q),
.ds (),
.qs ()
);
assign reg2hw.key[4].qe = key_4_qe;
// Subregister 5 of Multireg key
// R[key_5]: V(True)
logic key_5_qe;
logic [0:0] key_5_flds_we;
assign key_5_qe = &key_5_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_5 (
.re (1'b0),
.we (key_5_we),
.wd (key_5_wd),
.d (hw2reg.key[5].d),
.qre (),
.qe (key_5_flds_we[0]),
.q (reg2hw.key[5].q),
.ds (),
.qs ()
);
assign reg2hw.key[5].qe = key_5_qe;
// Subregister 6 of Multireg key
// R[key_6]: V(True)
logic key_6_qe;
logic [0:0] key_6_flds_we;
assign key_6_qe = &key_6_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_6 (
.re (1'b0),
.we (key_6_we),
.wd (key_6_wd),
.d (hw2reg.key[6].d),
.qre (),
.qe (key_6_flds_we[0]),
.q (reg2hw.key[6].q),
.ds (),
.qs ()
);
assign reg2hw.key[6].qe = key_6_qe;
// Subregister 7 of Multireg key
// R[key_7]: V(True)
logic key_7_qe;
logic [0:0] key_7_flds_we;
assign key_7_qe = &key_7_flds_we;
prim_subreg_ext #(
.DW (32)
) u_key_7 (
.re (1'b0),
.we (key_7_we),
.wd (key_7_wd),
.d (hw2reg.key[7].d),
.qre (),
.qe (key_7_flds_we[0]),
.q (reg2hw.key[7].q),
.ds (),
.qs ()
);
assign reg2hw.key[7].qe = key_7_qe;
// Subregister 0 of Multireg digest
// R[digest_0]: V(True)
prim_subreg_ext #(
.DW (32)
) u_digest_0 (
.re (digest_0_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.digest[0].d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (digest_0_qs)
);
// Subregister 1 of Multireg digest
// R[digest_1]: V(True)
prim_subreg_ext #(
.DW (32)
) u_digest_1 (
.re (digest_1_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.digest[1].d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (digest_1_qs)
);
// Subregister 2 of Multireg digest
// R[digest_2]: V(True)
prim_subreg_ext #(
.DW (32)
) u_digest_2 (
.re (digest_2_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.digest[2].d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (digest_2_qs)
);
// Subregister 3 of Multireg digest
// R[digest_3]: V(True)
prim_subreg_ext #(
.DW (32)
) u_digest_3 (
.re (digest_3_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.digest[3].d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (digest_3_qs)
);
// Subregister 4 of Multireg digest
// R[digest_4]: V(True)
prim_subreg_ext #(
.DW (32)
) u_digest_4 (
.re (digest_4_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.digest[4].d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (digest_4_qs)
);
// Subregister 5 of Multireg digest
// R[digest_5]: V(True)
prim_subreg_ext #(
.DW (32)
) u_digest_5 (
.re (digest_5_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.digest[5].d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (digest_5_qs)
);
// Subregister 6 of Multireg digest
// R[digest_6]: V(True)
prim_subreg_ext #(
.DW (32)
) u_digest_6 (
.re (digest_6_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.digest[6].d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (digest_6_qs)
);
// Subregister 7 of Multireg digest
// R[digest_7]: V(True)
prim_subreg_ext #(
.DW (32)
) u_digest_7 (
.re (digest_7_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.digest[7].d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (digest_7_qs)
);
// R[msg_length_lower]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (32'h0)
) u_msg_length_lower (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.msg_length_lower.de),
.d (hw2reg.msg_length_lower.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (msg_length_lower_qs)
);
// R[msg_length_upper]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (32'h0)
) u_msg_length_upper (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.msg_length_upper.de),
.d (hw2reg.msg_length_upper.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (msg_length_upper_qs)
);
logic [26:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == HMAC_INTR_STATE_OFFSET);
addr_hit[ 1] = (reg_addr == HMAC_INTR_ENABLE_OFFSET);
addr_hit[ 2] = (reg_addr == HMAC_INTR_TEST_OFFSET);
addr_hit[ 3] = (reg_addr == HMAC_ALERT_TEST_OFFSET);
addr_hit[ 4] = (reg_addr == HMAC_CFG_OFFSET);
addr_hit[ 5] = (reg_addr == HMAC_CMD_OFFSET);
addr_hit[ 6] = (reg_addr == HMAC_STATUS_OFFSET);
addr_hit[ 7] = (reg_addr == HMAC_ERR_CODE_OFFSET);
addr_hit[ 8] = (reg_addr == HMAC_WIPE_SECRET_OFFSET);
addr_hit[ 9] = (reg_addr == HMAC_KEY_0_OFFSET);
addr_hit[10] = (reg_addr == HMAC_KEY_1_OFFSET);
addr_hit[11] = (reg_addr == HMAC_KEY_2_OFFSET);
addr_hit[12] = (reg_addr == HMAC_KEY_3_OFFSET);
addr_hit[13] = (reg_addr == HMAC_KEY_4_OFFSET);
addr_hit[14] = (reg_addr == HMAC_KEY_5_OFFSET);
addr_hit[15] = (reg_addr == HMAC_KEY_6_OFFSET);
addr_hit[16] = (reg_addr == HMAC_KEY_7_OFFSET);
addr_hit[17] = (reg_addr == HMAC_DIGEST_0_OFFSET);
addr_hit[18] = (reg_addr == HMAC_DIGEST_1_OFFSET);
addr_hit[19] = (reg_addr == HMAC_DIGEST_2_OFFSET);
addr_hit[20] = (reg_addr == HMAC_DIGEST_3_OFFSET);
addr_hit[21] = (reg_addr == HMAC_DIGEST_4_OFFSET);
addr_hit[22] = (reg_addr == HMAC_DIGEST_5_OFFSET);
addr_hit[23] = (reg_addr == HMAC_DIGEST_6_OFFSET);
addr_hit[24] = (reg_addr == HMAC_DIGEST_7_OFFSET);
addr_hit[25] = (reg_addr == HMAC_MSG_LENGTH_LOWER_OFFSET);
addr_hit[26] = (reg_addr == HMAC_MSG_LENGTH_UPPER_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[ 0] & (|(HMAC_PERMIT[ 0] & ~reg_be))) |
(addr_hit[ 1] & (|(HMAC_PERMIT[ 1] & ~reg_be))) |
(addr_hit[ 2] & (|(HMAC_PERMIT[ 2] & ~reg_be))) |
(addr_hit[ 3] & (|(HMAC_PERMIT[ 3] & ~reg_be))) |
(addr_hit[ 4] & (|(HMAC_PERMIT[ 4] & ~reg_be))) |
(addr_hit[ 5] & (|(HMAC_PERMIT[ 5] & ~reg_be))) |
(addr_hit[ 6] & (|(HMAC_PERMIT[ 6] & ~reg_be))) |
(addr_hit[ 7] & (|(HMAC_PERMIT[ 7] & ~reg_be))) |
(addr_hit[ 8] & (|(HMAC_PERMIT[ 8] & ~reg_be))) |
(addr_hit[ 9] & (|(HMAC_PERMIT[ 9] & ~reg_be))) |
(addr_hit[10] & (|(HMAC_PERMIT[10] & ~reg_be))) |
(addr_hit[11] & (|(HMAC_PERMIT[11] & ~reg_be))) |
(addr_hit[12] & (|(HMAC_PERMIT[12] & ~reg_be))) |
(addr_hit[13] & (|(HMAC_PERMIT[13] & ~reg_be))) |
(addr_hit[14] & (|(HMAC_PERMIT[14] & ~reg_be))) |
(addr_hit[15] & (|(HMAC_PERMIT[15] & ~reg_be))) |
(addr_hit[16] & (|(HMAC_PERMIT[16] & ~reg_be))) |
(addr_hit[17] & (|(HMAC_PERMIT[17] & ~reg_be))) |
(addr_hit[18] & (|(HMAC_PERMIT[18] & ~reg_be))) |
(addr_hit[19] & (|(HMAC_PERMIT[19] & ~reg_be))) |
(addr_hit[20] & (|(HMAC_PERMIT[20] & ~reg_be))) |
(addr_hit[21] & (|(HMAC_PERMIT[21] & ~reg_be))) |
(addr_hit[22] & (|(HMAC_PERMIT[22] & ~reg_be))) |
(addr_hit[23] & (|(HMAC_PERMIT[23] & ~reg_be))) |
(addr_hit[24] & (|(HMAC_PERMIT[24] & ~reg_be))) |
(addr_hit[25] & (|(HMAC_PERMIT[25] & ~reg_be))) |
(addr_hit[26] & (|(HMAC_PERMIT[26] & ~reg_be)))));
end
// Generate write-enables
assign intr_state_we = addr_hit[0] & reg_we & !reg_error;
assign intr_state_hmac_done_wd = reg_wdata[0];
assign intr_state_fifo_empty_wd = reg_wdata[1];
assign intr_state_hmac_err_wd = reg_wdata[2];
assign intr_enable_we = addr_hit[1] & reg_we & !reg_error;
assign intr_enable_hmac_done_wd = reg_wdata[0];
assign intr_enable_fifo_empty_wd = reg_wdata[1];
assign intr_enable_hmac_err_wd = reg_wdata[2];
assign intr_test_we = addr_hit[2] & reg_we & !reg_error;
assign intr_test_hmac_done_wd = reg_wdata[0];
assign intr_test_fifo_empty_wd = reg_wdata[1];
assign intr_test_hmac_err_wd = reg_wdata[2];
assign alert_test_we = addr_hit[3] & reg_we & !reg_error;
assign alert_test_wd = reg_wdata[0];
assign cfg_re = addr_hit[4] & reg_re & !reg_error;
assign cfg_we = addr_hit[4] & reg_we & !reg_error;
assign cfg_hmac_en_wd = reg_wdata[0];
assign cfg_sha_en_wd = reg_wdata[1];
assign cfg_endian_swap_wd = reg_wdata[2];
assign cfg_digest_swap_wd = reg_wdata[3];
assign cmd_we = addr_hit[5] & reg_we & !reg_error;
assign cmd_hash_start_wd = reg_wdata[0];
assign cmd_hash_process_wd = reg_wdata[1];
assign status_re = addr_hit[6] & reg_re & !reg_error;
assign wipe_secret_we = addr_hit[8] & reg_we & !reg_error;
assign wipe_secret_wd = reg_wdata[31:0];
assign key_0_we = addr_hit[9] & reg_we & !reg_error;
assign key_0_wd = reg_wdata[31:0];
assign key_1_we = addr_hit[10] & reg_we & !reg_error;
assign key_1_wd = reg_wdata[31:0];
assign key_2_we = addr_hit[11] & reg_we & !reg_error;
assign key_2_wd = reg_wdata[31:0];
assign key_3_we = addr_hit[12] & reg_we & !reg_error;
assign key_3_wd = reg_wdata[31:0];
assign key_4_we = addr_hit[13] & reg_we & !reg_error;
assign key_4_wd = reg_wdata[31:0];
assign key_5_we = addr_hit[14] & reg_we & !reg_error;
assign key_5_wd = reg_wdata[31:0];
assign key_6_we = addr_hit[15] & reg_we & !reg_error;
assign key_6_wd = reg_wdata[31:0];
assign key_7_we = addr_hit[16] & reg_we & !reg_error;
assign key_7_wd = reg_wdata[31:0];
assign digest_0_re = addr_hit[17] & reg_re & !reg_error;
assign digest_1_re = addr_hit[18] & reg_re & !reg_error;
assign digest_2_re = addr_hit[19] & reg_re & !reg_error;
assign digest_3_re = addr_hit[20] & reg_re & !reg_error;
assign digest_4_re = addr_hit[21] & reg_re & !reg_error;
assign digest_5_re = addr_hit[22] & reg_re & !reg_error;
assign digest_6_re = addr_hit[23] & reg_re & !reg_error;
assign digest_7_re = addr_hit[24] & reg_re & !reg_error;
// Assign write-enables to checker logic vector.
always_comb begin
reg_we_check = '0;
reg_we_check[0] = intr_state_we;
reg_we_check[1] = intr_enable_we;
reg_we_check[2] = intr_test_we;
reg_we_check[3] = alert_test_we;
reg_we_check[4] = cfg_we;
reg_we_check[5] = cmd_we;
reg_we_check[6] = 1'b0;
reg_we_check[7] = 1'b0;
reg_we_check[8] = wipe_secret_we;
reg_we_check[9] = key_0_we;
reg_we_check[10] = key_1_we;
reg_we_check[11] = key_2_we;
reg_we_check[12] = key_3_we;
reg_we_check[13] = key_4_we;
reg_we_check[14] = key_5_we;
reg_we_check[15] = key_6_we;
reg_we_check[16] = key_7_we;
reg_we_check[17] = 1'b0;
reg_we_check[18] = 1'b0;
reg_we_check[19] = 1'b0;
reg_we_check[20] = 1'b0;
reg_we_check[21] = 1'b0;
reg_we_check[22] = 1'b0;
reg_we_check[23] = 1'b0;
reg_we_check[24] = 1'b0;
reg_we_check[25] = 1'b0;
reg_we_check[26] = 1'b0;
end
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = intr_state_hmac_done_qs;
reg_rdata_next[1] = intr_state_fifo_empty_qs;
reg_rdata_next[2] = intr_state_hmac_err_qs;
end
addr_hit[1]: begin
reg_rdata_next[0] = intr_enable_hmac_done_qs;
reg_rdata_next[1] = intr_enable_fifo_empty_qs;
reg_rdata_next[2] = intr_enable_hmac_err_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[2] = '0;
end
addr_hit[3]: begin
reg_rdata_next[0] = '0;
end
addr_hit[4]: begin
reg_rdata_next[0] = cfg_hmac_en_qs;
reg_rdata_next[1] = cfg_sha_en_qs;
reg_rdata_next[2] = cfg_endian_swap_qs;
reg_rdata_next[3] = cfg_digest_swap_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
end
addr_hit[6]: begin
reg_rdata_next[0] = status_fifo_empty_qs;
reg_rdata_next[1] = status_fifo_full_qs;
reg_rdata_next[8:4] = status_fifo_depth_qs;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = err_code_qs;
end
addr_hit[8]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[10]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[11]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[12]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[13]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[14]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[15]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[16]: begin
reg_rdata_next[31:0] = '0;
end
addr_hit[17]: begin
reg_rdata_next[31:0] = digest_0_qs;
end
addr_hit[18]: begin
reg_rdata_next[31:0] = digest_1_qs;
end
addr_hit[19]: begin
reg_rdata_next[31:0] = digest_2_qs;
end
addr_hit[20]: begin
reg_rdata_next[31:0] = digest_3_qs;
end
addr_hit[21]: begin
reg_rdata_next[31:0] = digest_4_qs;
end
addr_hit[22]: begin
reg_rdata_next[31:0] = digest_5_qs;
end
addr_hit[23]: begin
reg_rdata_next[31:0] = digest_6_qs;
end
addr_hit[24]: begin
reg_rdata_next[31:0] = digest_7_qs;
end
addr_hit[25]: begin
reg_rdata_next[31:0] = msg_length_lower_qs;
end
addr_hit[26]: begin
reg_rdata_next[31:0] = msg_length_upper_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// shadow busy
logic shadow_busy;
assign shadow_busy = 1'b0;
// register busy
assign reg_busy = shadow_busy;
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule