blob: d2b28b1b53eb055e31d8041dc6dc5855b8c90eac [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module sram_ctrl_regs_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output sram_ctrl_reg_pkg::sram_ctrl_regs_reg2hw_t reg2hw, // Write
input sram_ctrl_reg_pkg::sram_ctrl_regs_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import sram_ctrl_reg_pkg::* ;
localparam int AW = 5;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(tl_i),
.err_o(intg_err)
);
// also check for spurious write enables
logic reg_we_err;
logic [5:0] reg_we_check;
prim_reg_we_check #(
.OneHotWidth(6)
) u_prim_reg_we_check (
.clk_i(clk_i),
.rst_ni(rst_ni),
.oh_i (reg_we_check),
.en_i (reg_we && !addrmiss),
.err_o (reg_we_err)
);
logic err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_q <= '0;
end else if (intg_err || reg_we_err) begin
err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = err_q | intg_err | reg_we_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(tl_o)
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.en_ifetch_i(prim_mubi_pkg::MuBi4False),
.intg_error_o(),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
// cdc oversampling signals
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic alert_test_we;
logic alert_test_wd;
logic status_bus_integ_error_qs;
logic status_init_error_qs;
logic status_escalated_qs;
logic status_scr_key_valid_qs;
logic status_scr_key_seed_valid_qs;
logic status_init_done_qs;
logic exec_regwen_we;
logic exec_regwen_qs;
logic exec_regwen_wd;
logic exec_we;
logic [3:0] exec_qs;
logic [3:0] exec_wd;
logic ctrl_regwen_we;
logic ctrl_regwen_qs;
logic ctrl_regwen_wd;
logic ctrl_we;
logic ctrl_renew_scr_key_wd;
logic ctrl_init_wd;
// Register instances
// R[alert_test]: V(True)
logic alert_test_qe;
logic [0:0] alert_test_flds_we;
assign alert_test_qe = &alert_test_flds_we;
prim_subreg_ext #(
.DW (1)
) u_alert_test (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[0]),
.q (reg2hw.alert_test.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.qe = alert_test_qe;
// R[status]: V(False)
// F[bus_integ_error]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_bus_integ_error (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.bus_integ_error.de),
.d (hw2reg.status.bus_integ_error.d),
// to internal hardware
.qe (),
.q (reg2hw.status.bus_integ_error.q),
.ds (),
// to register interface (read)
.qs (status_bus_integ_error_qs)
);
// F[init_error]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_init_error (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.init_error.de),
.d (hw2reg.status.init_error.d),
// to internal hardware
.qe (),
.q (reg2hw.status.init_error.q),
.ds (),
// to register interface (read)
.qs (status_init_error_qs)
);
// F[escalated]: 2:2
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_escalated (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.escalated.de),
.d (hw2reg.status.escalated.d),
// to internal hardware
.qe (),
.q (reg2hw.status.escalated.q),
.ds (),
// to register interface (read)
.qs (status_escalated_qs)
);
// F[scr_key_valid]: 3:3
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_scr_key_valid (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.scr_key_valid.de),
.d (hw2reg.status.scr_key_valid.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (status_scr_key_valid_qs)
);
// F[scr_key_seed_valid]: 4:4
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_scr_key_seed_valid (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.scr_key_seed_valid.de),
.d (hw2reg.status.scr_key_seed_valid.d),
// to internal hardware
.qe (),
.q (reg2hw.status.scr_key_seed_valid.q),
.ds (),
// to register interface (read)
.qs (status_scr_key_seed_valid_qs)
);
// F[init_done]: 5:5
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRO),
.RESVAL (1'h0)
) u_status_init_done (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (1'b0),
.wd ('0),
// from internal hardware
.de (hw2reg.status.init_done.de),
.d (hw2reg.status.init_done.d),
// to internal hardware
.qe (),
.q (reg2hw.status.init_done.q),
.ds (),
// to register interface (read)
.qs (status_init_done_qs)
);
// R[exec_regwen]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW0C),
.RESVAL (1'h1)
) u_exec_regwen (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (exec_regwen_we),
.wd (exec_regwen_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (exec_regwen_qs)
);
// R[exec]: V(False)
// Create REGWEN-gated WE signal
logic exec_gated_we;
assign exec_gated_we = exec_we & exec_regwen_qs;
prim_subreg #(
.DW (4),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (4'h9)
) u_exec (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (exec_gated_we),
.wd (exec_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.exec.q),
.ds (),
// to register interface (read)
.qs (exec_qs)
);
// R[ctrl_regwen]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW0C),
.RESVAL (1'h1)
) u_ctrl_regwen (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_regwen_we),
.wd (ctrl_regwen_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (ctrl_regwen_qs)
);
// R[ctrl]: V(False)
logic ctrl_qe;
logic [1:0] ctrl_flds_we;
prim_flop #(
.Width(1),
.ResetValue(0)
) u_ctrl0_qe (
.clk_i(clk_i),
.rst_ni(rst_ni),
.d_i(&ctrl_flds_we),
.q_o(ctrl_qe)
);
// Create REGWEN-gated WE signal
logic ctrl_gated_we;
assign ctrl_gated_we = ctrl_we & ctrl_regwen_qs;
// F[renew_scr_key]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (1'h0)
) u_ctrl_renew_scr_key (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_gated_we),
.wd (ctrl_renew_scr_key_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (ctrl_flds_we[0]),
.q (reg2hw.ctrl.renew_scr_key.q),
.ds (),
// to register interface (read)
.qs ()
);
assign reg2hw.ctrl.renew_scr_key.qe = ctrl_qe;
// F[init]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessWO),
.RESVAL (1'h0)
) u_ctrl_init (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_gated_we),
.wd (ctrl_init_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (ctrl_flds_we[1]),
.q (reg2hw.ctrl.init.q),
.ds (),
// to register interface (read)
.qs ()
);
assign reg2hw.ctrl.init.qe = ctrl_qe;
logic [5:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[0] = (reg_addr == SRAM_CTRL_ALERT_TEST_OFFSET);
addr_hit[1] = (reg_addr == SRAM_CTRL_STATUS_OFFSET);
addr_hit[2] = (reg_addr == SRAM_CTRL_EXEC_REGWEN_OFFSET);
addr_hit[3] = (reg_addr == SRAM_CTRL_EXEC_OFFSET);
addr_hit[4] = (reg_addr == SRAM_CTRL_CTRL_REGWEN_OFFSET);
addr_hit[5] = (reg_addr == SRAM_CTRL_CTRL_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[0] & (|(SRAM_CTRL_REGS_PERMIT[0] & ~reg_be))) |
(addr_hit[1] & (|(SRAM_CTRL_REGS_PERMIT[1] & ~reg_be))) |
(addr_hit[2] & (|(SRAM_CTRL_REGS_PERMIT[2] & ~reg_be))) |
(addr_hit[3] & (|(SRAM_CTRL_REGS_PERMIT[3] & ~reg_be))) |
(addr_hit[4] & (|(SRAM_CTRL_REGS_PERMIT[4] & ~reg_be))) |
(addr_hit[5] & (|(SRAM_CTRL_REGS_PERMIT[5] & ~reg_be)))));
end
// Generate write-enables
assign alert_test_we = addr_hit[0] & reg_we & !reg_error;
assign alert_test_wd = reg_wdata[0];
assign exec_regwen_we = addr_hit[2] & reg_we & !reg_error;
assign exec_regwen_wd = reg_wdata[0];
assign exec_we = addr_hit[3] & reg_we & !reg_error;
assign exec_wd = reg_wdata[3:0];
assign ctrl_regwen_we = addr_hit[4] & reg_we & !reg_error;
assign ctrl_regwen_wd = reg_wdata[0];
assign ctrl_we = addr_hit[5] & reg_we & !reg_error;
assign ctrl_renew_scr_key_wd = reg_wdata[0];
assign ctrl_init_wd = reg_wdata[1];
// Assign write-enables to checker logic vector.
always_comb begin
reg_we_check = '0;
reg_we_check[0] = alert_test_we;
reg_we_check[1] = 1'b0;
reg_we_check[2] = exec_regwen_we;
reg_we_check[3] = exec_gated_we;
reg_we_check[4] = ctrl_regwen_we;
reg_we_check[5] = ctrl_gated_we;
end
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = '0;
end
addr_hit[1]: begin
reg_rdata_next[0] = status_bus_integ_error_qs;
reg_rdata_next[1] = status_init_error_qs;
reg_rdata_next[2] = status_escalated_qs;
reg_rdata_next[3] = status_scr_key_valid_qs;
reg_rdata_next[4] = status_scr_key_seed_valid_qs;
reg_rdata_next[5] = status_init_done_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = exec_regwen_qs;
end
addr_hit[3]: begin
reg_rdata_next[3:0] = exec_qs;
end
addr_hit[4]: begin
reg_rdata_next[0] = ctrl_regwen_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// shadow busy
logic shadow_busy;
assign shadow_busy = 1'b0;
// register busy
assign reg_busy = shadow_busy;
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule