blob: 2738970b3bad6a7f08ec4617334f52ed8ad9ee1b [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "sw/device/lib/dif/dif_hmac.h"
#include "sw/device/lib/base/bitfield.h"
#include "sw/device/lib/base/memory.h"
#include "sw/device/lib/base/mmio.h"
#include "hmac_regs.h" // Generated.
/**
* Read the status register from `hmac`.
*
* @param hmac The HMAC device to read the status register from.
* @return The contents of hmac.STATUS.
*/
static uint32_t get_status(const dif_hmac_t *hmac) {
return mmio_region_read32(hmac->base_addr, HMAC_STATUS_REG_OFFSET);
}
/**
* Returns the number of entries in the FIFO of `hmac`. If the FIFO is empty,
* this function will return 0, and if the FIFO is full, this funciton will
* return `HMAC_FIFO_MAX`.
*
* @param hmac The HMAC device to check the FIFO size of.
* @return The number of entries in the HMAC FIFO.
*/
static uint32_t get_fifo_entry_count(const dif_hmac_t *hmac) {
return bitfield_field32_read(get_status(hmac), HMAC_STATUS_FIFO_DEPTH_FIELD);
}
/**
* A helper function for calculating `HMAC_FIFO_MAX` - `get_fifo_entry_count()`.
*/
static uint32_t get_fifo_available_space(const dif_hmac_t *hmac) {
return HMAC_MSG_FIFO_SIZE_WORDS - get_fifo_entry_count(hmac);
}
/**
* Sets up the CFG value for a given per-transaction configuration.
*
* This only sets the right values for the ENDIAN_SWAP / DIGEST_SWAP values,
* using the values in `config`.
*
* The implementation here is careful to only update `*device_config` once it
* has calculated the entire value for the register, rather than gradually
* updating it early. The value of `*device_config` is only updated if the
* function returns #kDifOk.
*
* @param[inout] device_config HMAC CFG register value to be updated;
* @param config A per-transaction configuration.
* @returns #kDifError if the config is invalid, #kDifOk if
* `*device_config` was sucessfully updated.
*/
static dif_result_t dif_hmac_calculate_device_config_value(
uint32_t *device_config, const dif_hmac_transaction_t config) {
// Set the byte-order of the input message.
bool swap_message_endianness;
switch (config.message_endianness) {
case kDifHmacEndiannessBig:
swap_message_endianness = true;
break;
case kDifHmacEndiannessLittle:
swap_message_endianness = false;
break;
default:
return kDifError;
}
// Set the byte-order of the digest.
bool swap_digest_endianness;
switch (config.digest_endianness) {
case kDifHmacEndiannessBig:
swap_digest_endianness = true;
break;
case kDifHmacEndiannessLittle:
swap_digest_endianness = false;
break;
default:
return kDifError;
}
// `*device_config` must only be updated after the two switch statements,
// because they can return #kDifError.
*device_config = bitfield_bit32_write(
*device_config, HMAC_CFG_ENDIAN_SWAP_BIT, swap_message_endianness);
*device_config = bitfield_bit32_write(
*device_config, HMAC_CFG_DIGEST_SWAP_BIT, swap_digest_endianness);
return kDifOk;
}
dif_result_t dif_hmac_mode_hmac_start(const dif_hmac_t *hmac,
const uint8_t *key,
const dif_hmac_transaction_t config) {
if (hmac == NULL || key == NULL) {
return kDifBadArg;
}
// Read current CFG register value.
uint32_t reg = mmio_region_read32(hmac->base_addr, HMAC_CFG_REG_OFFSET);
// Set the byte-order of the input message and the digest.
DIF_RETURN_IF_ERROR(dif_hmac_calculate_device_config_value(&reg, config));
// Set the HMAC key.
// The least significant word is at HMAC_KEY_7_REG_OFFSET.
// From the HWIP spec: "Order of the secret key is: key[255:0] = {KEY0, KEY1,
// KEY2, ... , KEY7};"
for (size_t i = 0; i < HMAC_PARAM_NUM_WORDS; ++i) {
const uint32_t word_offset = i * sizeof(uint32_t);
mmio_region_write32(hmac->base_addr, HMAC_KEY_7_REG_OFFSET - word_offset,
read_32((char *)key + word_offset));
}
// Set HMAC to process in HMAC mode (not SHA256-only mode).
reg = bitfield_bit32_write(reg, HMAC_CFG_SHA_EN_BIT, true);
reg = bitfield_bit32_write(reg, HMAC_CFG_HMAC_EN_BIT, true);
mmio_region_write32(hmac->base_addr, HMAC_CFG_REG_OFFSET, reg);
// Begin HMAC operation.
mmio_region_nonatomic_set_bit32(hmac->base_addr, HMAC_CMD_REG_OFFSET,
HMAC_CMD_HASH_START_BIT);
return kDifOk;
}
dif_result_t dif_hmac_mode_sha256_start(const dif_hmac_t *hmac,
const dif_hmac_transaction_t config) {
if (hmac == NULL) {
return kDifBadArg;
}
// Read current CFG register value.
uint32_t reg = mmio_region_read32(hmac->base_addr, HMAC_CFG_REG_OFFSET);
// Set the byte-order of the input message and the digest.
DIF_RETURN_IF_ERROR(dif_hmac_calculate_device_config_value(&reg, config));
// Set HMAC to process in SHA256-only mode (without HMAC mode).
reg = bitfield_bit32_write(reg, HMAC_CFG_SHA_EN_BIT, true);
reg = bitfield_bit32_write(reg, HMAC_CFG_HMAC_EN_BIT, false);
// Write new CFG register value.
mmio_region_write32(hmac->base_addr, HMAC_CFG_REG_OFFSET, reg);
// Begin SHA256-only operation.
mmio_region_nonatomic_set_bit32(hmac->base_addr, HMAC_CMD_REG_OFFSET,
HMAC_CMD_HASH_START_BIT);
return kDifOk;
}
dif_result_t dif_hmac_fifo_push(const dif_hmac_t *hmac, const void *data,
size_t len, size_t *bytes_sent) {
if (hmac == NULL || data == NULL) {
return kDifBadArg;
}
const uint8_t *data_sent = (const uint8_t *)data;
size_t bytes_remaining = len;
while (bytes_remaining > 0 && get_fifo_available_space(hmac) > 0) {
bool word_aligned = (uintptr_t)data_sent % sizeof(uint32_t) == 0;
size_t bytes_written = 0;
if (bytes_remaining < sizeof(uint32_t) || !word_aligned) {
// Individual byte writes are needed if the buffer isn't aligned or there
// are no more full words to write.
mmio_region_write8(hmac->base_addr, HMAC_MSG_FIFO_REG_OFFSET, *data_sent);
bytes_written = 1;
} else {
// `data_sent` is word-aligned and there are still words to write.
uint32_t word = read_32(data_sent);
mmio_region_write32(hmac->base_addr, HMAC_MSG_FIFO_REG_OFFSET, word);
bytes_written = sizeof(uint32_t);
}
bytes_remaining -= bytes_written;
data_sent += bytes_written;
}
if (bytes_sent != NULL) {
*bytes_sent = len - bytes_remaining;
}
if (bytes_remaining > 0) {
return kDifIpFifoFull;
}
return kDifOk;
}
dif_result_t dif_hmac_fifo_count_entries(const dif_hmac_t *hmac,
uint32_t *num_entries) {
if (hmac == NULL || num_entries == NULL) {
return kDifBadArg;
}
*num_entries = get_fifo_entry_count(hmac);
return kDifOk;
}
dif_result_t dif_hmac_get_message_length(const dif_hmac_t *hmac,
uint64_t *msg_len) {
if (hmac == NULL || msg_len == NULL) {
return kDifBadArg;
}
uint64_t msg_lower =
mmio_region_read32(hmac->base_addr, HMAC_MSG_LENGTH_LOWER_REG_OFFSET);
uint64_t msg_upper =
mmio_region_read32(hmac->base_addr, HMAC_MSG_LENGTH_UPPER_REG_OFFSET);
*msg_len = (msg_upper << 32) | msg_lower;
return kDifOk;
}
dif_result_t dif_hmac_process(const dif_hmac_t *hmac) {
if (hmac == NULL) {
return kDifBadArg;
}
mmio_region_nonatomic_set_bit32(hmac->base_addr, HMAC_CMD_REG_OFFSET,
HMAC_CMD_HASH_PROCESS_BIT);
return kDifOk;
}
dif_result_t dif_hmac_finish(const dif_hmac_t *hmac,
dif_hmac_digest_t *digest) {
if (hmac == NULL || digest == NULL) {
return kDifBadArg;
}
// Check if hmac_done is asserted.
bool done = mmio_region_get_bit32(hmac->base_addr, HMAC_INTR_STATE_REG_OFFSET,
HMAC_INTR_STATE_HMAC_DONE_BIT);
// Check if fifo_empty is asserted.
bool fifo_empty = mmio_region_get_bit32(
hmac->base_addr, HMAC_STATUS_REG_OFFSET, HMAC_STATUS_FIFO_EMPTY_BIT);
if (done) {
// Clear hmac_done.
mmio_region_nonatomic_set_bit32(hmac->base_addr, HMAC_INTR_STATE_REG_OFFSET,
HMAC_INTR_STATE_HMAC_DONE_BIT);
} else if (!fifo_empty) {
return kDifUnavailable;
}
// Read the digest in reverse to preserve the numerical value.
// The least significant word is at HMAC_DIGEST_7_REG_OFFSET.
// From the HWIP spec: "Order of the digest is: digest[255:0] = {DIGEST0,
// DIGEST1, DIGEST2, ... , DIGEST7};"
for (size_t i = 0; i < ARRAYSIZE(digest->digest); ++i) {
digest->digest[i] = mmio_region_read32(
hmac->base_addr, HMAC_DIGEST_7_REG_OFFSET - i * sizeof(uint32_t));
}
// Disable HMAC and SHA256 until the next transaction, clearing the current
// digest.
uint32_t device_config =
mmio_region_read32(hmac->base_addr, HMAC_CFG_REG_OFFSET);
device_config =
bitfield_bit32_write(device_config, HMAC_CFG_SHA_EN_BIT, false);
device_config =
bitfield_bit32_write(device_config, HMAC_CFG_HMAC_EN_BIT, false);
mmio_region_write32(hmac->base_addr, HMAC_CFG_REG_OFFSET, device_config);
return kDifOk;
}
dif_result_t dif_hmac_wipe_secret(const dif_hmac_t *hmac, uint32_t entropy) {
if (hmac == NULL) {
return kDifBadArg;
}
mmio_region_write32(hmac->base_addr, HMAC_WIPE_SECRET_REG_OFFSET, entropy);
return kDifOk;
}