| // Copyright lowRISC contributors. |
| // Licensed under the Apache License, Version 2.0, see LICENSE for details. |
| // SPDX-License-Identifier: Apache-2.0 |
| |
| #include "sw/device/lib/dif/dif_hmac.h" |
| |
| #include "sw/device/lib/base/bitfield.h" |
| #include "sw/device/lib/base/memory.h" |
| #include "sw/device/lib/base/mmio.h" |
| |
| #include "hmac_regs.h" // Generated. |
| |
| /** |
| * Read the status register from `hmac`. |
| * |
| * @param hmac The HMAC device to read the status register from. |
| * @return The contents of hmac.STATUS. |
| */ |
| static uint32_t get_status(const dif_hmac_t *hmac) { |
| return mmio_region_read32(hmac->base_addr, HMAC_STATUS_REG_OFFSET); |
| } |
| |
| /** |
| * Returns the number of entries in the FIFO of `hmac`. If the FIFO is empty, |
| * this function will return 0, and if the FIFO is full, this funciton will |
| * return `HMAC_FIFO_MAX`. |
| * |
| * @param hmac The HMAC device to check the FIFO size of. |
| * @return The number of entries in the HMAC FIFO. |
| */ |
| static uint32_t get_fifo_entry_count(const dif_hmac_t *hmac) { |
| return bitfield_field32_read(get_status(hmac), HMAC_STATUS_FIFO_DEPTH_FIELD); |
| } |
| |
| /** |
| * A helper function for calculating `HMAC_FIFO_MAX` - `get_fifo_entry_count()`. |
| */ |
| static uint32_t get_fifo_available_space(const dif_hmac_t *hmac) { |
| return HMAC_MSG_FIFO_SIZE_WORDS - get_fifo_entry_count(hmac); |
| } |
| |
| /** |
| * Sets up the CFG value for a given per-transaction configuration. |
| * |
| * This only sets the right values for the ENDIAN_SWAP / DIGEST_SWAP values, |
| * using the values in `config`. |
| * |
| * The implementation here is careful to only update `*device_config` once it |
| * has calculated the entire value for the register, rather than gradually |
| * updating it early. The value of `*device_config` is only updated if the |
| * function returns #kDifOk. |
| * |
| * @param[inout] device_config HMAC CFG register value to be updated; |
| * @param config A per-transaction configuration. |
| * @returns #kDifError if the config is invalid, #kDifOk if |
| * `*device_config` was sucessfully updated. |
| */ |
| static dif_result_t dif_hmac_calculate_device_config_value( |
| uint32_t *device_config, const dif_hmac_transaction_t config) { |
| // Set the byte-order of the input message. |
| bool swap_message_endianness; |
| switch (config.message_endianness) { |
| case kDifHmacEndiannessBig: |
| swap_message_endianness = true; |
| break; |
| case kDifHmacEndiannessLittle: |
| swap_message_endianness = false; |
| break; |
| default: |
| return kDifError; |
| } |
| |
| // Set the byte-order of the digest. |
| bool swap_digest_endianness; |
| switch (config.digest_endianness) { |
| case kDifHmacEndiannessBig: |
| swap_digest_endianness = true; |
| break; |
| case kDifHmacEndiannessLittle: |
| swap_digest_endianness = false; |
| break; |
| default: |
| return kDifError; |
| } |
| |
| // `*device_config` must only be updated after the two switch statements, |
| // because they can return #kDifError. |
| *device_config = bitfield_bit32_write( |
| *device_config, HMAC_CFG_ENDIAN_SWAP_BIT, swap_message_endianness); |
| *device_config = bitfield_bit32_write( |
| *device_config, HMAC_CFG_DIGEST_SWAP_BIT, swap_digest_endianness); |
| |
| return kDifOk; |
| } |
| |
| dif_result_t dif_hmac_mode_hmac_start(const dif_hmac_t *hmac, |
| const uint8_t *key, |
| const dif_hmac_transaction_t config) { |
| if (hmac == NULL || key == NULL) { |
| return kDifBadArg; |
| } |
| |
| // Read current CFG register value. |
| uint32_t reg = mmio_region_read32(hmac->base_addr, HMAC_CFG_REG_OFFSET); |
| |
| // Set the byte-order of the input message and the digest. |
| DIF_RETURN_IF_ERROR(dif_hmac_calculate_device_config_value(®, config)); |
| |
| // Set the HMAC key. |
| // The least significant word is at HMAC_KEY_7_REG_OFFSET. |
| // From the HWIP spec: "Order of the secret key is: key[255:0] = {KEY0, KEY1, |
| // KEY2, ... , KEY7};" |
| for (size_t i = 0; i < HMAC_PARAM_NUM_WORDS; ++i) { |
| const uint32_t word_offset = i * sizeof(uint32_t); |
| mmio_region_write32(hmac->base_addr, HMAC_KEY_7_REG_OFFSET - word_offset, |
| read_32((char *)key + word_offset)); |
| } |
| |
| // Set HMAC to process in HMAC mode (not SHA256-only mode). |
| reg = bitfield_bit32_write(reg, HMAC_CFG_SHA_EN_BIT, true); |
| reg = bitfield_bit32_write(reg, HMAC_CFG_HMAC_EN_BIT, true); |
| mmio_region_write32(hmac->base_addr, HMAC_CFG_REG_OFFSET, reg); |
| |
| // Begin HMAC operation. |
| mmio_region_nonatomic_set_bit32(hmac->base_addr, HMAC_CMD_REG_OFFSET, |
| HMAC_CMD_HASH_START_BIT); |
| return kDifOk; |
| } |
| |
| dif_result_t dif_hmac_mode_sha256_start(const dif_hmac_t *hmac, |
| const dif_hmac_transaction_t config) { |
| if (hmac == NULL) { |
| return kDifBadArg; |
| } |
| |
| // Read current CFG register value. |
| uint32_t reg = mmio_region_read32(hmac->base_addr, HMAC_CFG_REG_OFFSET); |
| |
| // Set the byte-order of the input message and the digest. |
| DIF_RETURN_IF_ERROR(dif_hmac_calculate_device_config_value(®, config)); |
| |
| // Set HMAC to process in SHA256-only mode (without HMAC mode). |
| reg = bitfield_bit32_write(reg, HMAC_CFG_SHA_EN_BIT, true); |
| reg = bitfield_bit32_write(reg, HMAC_CFG_HMAC_EN_BIT, false); |
| |
| // Write new CFG register value. |
| mmio_region_write32(hmac->base_addr, HMAC_CFG_REG_OFFSET, reg); |
| |
| // Begin SHA256-only operation. |
| mmio_region_nonatomic_set_bit32(hmac->base_addr, HMAC_CMD_REG_OFFSET, |
| HMAC_CMD_HASH_START_BIT); |
| |
| return kDifOk; |
| } |
| |
| dif_result_t dif_hmac_fifo_push(const dif_hmac_t *hmac, const void *data, |
| size_t len, size_t *bytes_sent) { |
| if (hmac == NULL || data == NULL) { |
| return kDifBadArg; |
| } |
| |
| const uint8_t *data_sent = (const uint8_t *)data; |
| size_t bytes_remaining = len; |
| |
| while (bytes_remaining > 0 && get_fifo_available_space(hmac) > 0) { |
| bool word_aligned = (uintptr_t)data_sent % sizeof(uint32_t) == 0; |
| size_t bytes_written = 0; |
| |
| if (bytes_remaining < sizeof(uint32_t) || !word_aligned) { |
| // Individual byte writes are needed if the buffer isn't aligned or there |
| // are no more full words to write. |
| mmio_region_write8(hmac->base_addr, HMAC_MSG_FIFO_REG_OFFSET, *data_sent); |
| bytes_written = 1; |
| } else { |
| // `data_sent` is word-aligned and there are still words to write. |
| uint32_t word = read_32(data_sent); |
| mmio_region_write32(hmac->base_addr, HMAC_MSG_FIFO_REG_OFFSET, word); |
| bytes_written = sizeof(uint32_t); |
| } |
| |
| bytes_remaining -= bytes_written; |
| data_sent += bytes_written; |
| } |
| |
| if (bytes_sent != NULL) { |
| *bytes_sent = len - bytes_remaining; |
| } |
| |
| if (bytes_remaining > 0) { |
| return kDifIpFifoFull; |
| } |
| |
| return kDifOk; |
| } |
| |
| dif_result_t dif_hmac_fifo_count_entries(const dif_hmac_t *hmac, |
| uint32_t *num_entries) { |
| if (hmac == NULL || num_entries == NULL) { |
| return kDifBadArg; |
| } |
| |
| *num_entries = get_fifo_entry_count(hmac); |
| |
| return kDifOk; |
| } |
| |
| dif_result_t dif_hmac_get_message_length(const dif_hmac_t *hmac, |
| uint64_t *msg_len) { |
| if (hmac == NULL || msg_len == NULL) { |
| return kDifBadArg; |
| } |
| |
| uint64_t msg_lower = |
| mmio_region_read32(hmac->base_addr, HMAC_MSG_LENGTH_LOWER_REG_OFFSET); |
| uint64_t msg_upper = |
| mmio_region_read32(hmac->base_addr, HMAC_MSG_LENGTH_UPPER_REG_OFFSET); |
| |
| *msg_len = (msg_upper << 32) | msg_lower; |
| |
| return kDifOk; |
| } |
| |
| dif_result_t dif_hmac_process(const dif_hmac_t *hmac) { |
| if (hmac == NULL) { |
| return kDifBadArg; |
| } |
| |
| mmio_region_nonatomic_set_bit32(hmac->base_addr, HMAC_CMD_REG_OFFSET, |
| HMAC_CMD_HASH_PROCESS_BIT); |
| return kDifOk; |
| } |
| |
| dif_result_t dif_hmac_finish(const dif_hmac_t *hmac, |
| dif_hmac_digest_t *digest) { |
| if (hmac == NULL || digest == NULL) { |
| return kDifBadArg; |
| } |
| |
| // Check if hmac_done is asserted. |
| bool done = mmio_region_get_bit32(hmac->base_addr, HMAC_INTR_STATE_REG_OFFSET, |
| HMAC_INTR_STATE_HMAC_DONE_BIT); |
| |
| // Check if fifo_empty is asserted. |
| bool fifo_empty = mmio_region_get_bit32( |
| hmac->base_addr, HMAC_STATUS_REG_OFFSET, HMAC_STATUS_FIFO_EMPTY_BIT); |
| |
| if (done) { |
| // Clear hmac_done. |
| mmio_region_nonatomic_set_bit32(hmac->base_addr, HMAC_INTR_STATE_REG_OFFSET, |
| HMAC_INTR_STATE_HMAC_DONE_BIT); |
| } else if (!fifo_empty) { |
| return kDifUnavailable; |
| } |
| |
| // Read the digest in reverse to preserve the numerical value. |
| // The least significant word is at HMAC_DIGEST_7_REG_OFFSET. |
| // From the HWIP spec: "Order of the digest is: digest[255:0] = {DIGEST0, |
| // DIGEST1, DIGEST2, ... , DIGEST7};" |
| for (size_t i = 0; i < ARRAYSIZE(digest->digest); ++i) { |
| digest->digest[i] = mmio_region_read32( |
| hmac->base_addr, HMAC_DIGEST_7_REG_OFFSET - i * sizeof(uint32_t)); |
| } |
| |
| // Disable HMAC and SHA256 until the next transaction, clearing the current |
| // digest. |
| uint32_t device_config = |
| mmio_region_read32(hmac->base_addr, HMAC_CFG_REG_OFFSET); |
| device_config = |
| bitfield_bit32_write(device_config, HMAC_CFG_SHA_EN_BIT, false); |
| device_config = |
| bitfield_bit32_write(device_config, HMAC_CFG_HMAC_EN_BIT, false); |
| mmio_region_write32(hmac->base_addr, HMAC_CFG_REG_OFFSET, device_config); |
| |
| return kDifOk; |
| } |
| |
| dif_result_t dif_hmac_wipe_secret(const dif_hmac_t *hmac, uint32_t entropy) { |
| if (hmac == NULL) { |
| return kDifBadArg; |
| } |
| |
| mmio_region_write32(hmac->base_addr, HMAC_WIPE_SECRET_REG_OFFSET, entropy); |
| |
| return kDifOk; |
| } |