title: “SPI Device DV Plan”

Goals

  • DV
    • Verify all SPI Device IP features by running dynamic simulations with a SV/UVM based testbench
    • Develop and run all tests based on the testplan below towards closing code and functional coverage on the IP and all of its sub-modules
  • FPV
    • Verify TileLink device protocol compliance with an SVA based testbench

Current status

  • [Design & verification stage]({{< relref “doc/project/hw_dashboard” >}})
    • [HW development stages]({{< relref “doc/project/hw_stages.md” >}})
  • Simulation results

Design features

For detailed information on SPI Device design features, please see the [SPI_device design specification]({{< relref “hw/ip/spi_device/doc” >}}).

Testbench architecture

SPI Device testbench has been constructed based on the [CIP testbench architecture]({{< relref “hw/dv/sv/cip_lib/doc” >}}).

Block diagram

Block diagram

Top level testbench

Top level testbench is located at hw/ip/spi_device/dv/tb/tb.sv. It instantiates the SPI Device DUT module hw/ip/spi_device/rtl/spi_device.sv. In addition, it instantiates the following interfaces, connects them to the DUT and sets their handle into uvm_config_db:

  • [Clock and reset interface]({{< relref “hw/dv/sv/common_ifs” >}})
  • [TileLink host interface]({{< relref “hw/dv/sv/tl_agent/README.md” >}})
  • [SPI interface]({{< relref “hw/dv/sv/spi_agent/README.md” >}})
  • Interrupts ([pins_if]({{< relref “hw/dv/sv/common_ifs” >}}))

Common DV utility components

The following utilities provide generic helper tasks and functions to perform activities that are common across the project:

  • [common_ifs]({{< relref “hw/dv/sv/common_ifs” >}})
  • [dv_utils_pkg]({{< relref “hw/dv/sv/dv_utils/README.md” >}})
  • [csr_utils_pkg]({{< relref “hw/dv/sv/csr_utils/README.md” >}})

Global types & methods

All common types and methods defined at the package level can be found in spi_device_env_pkg. Some of them in use are:

parameter uint SPI_DEVICE_ADDR_MAP_SIZE = 4096;
parameter uint SRAM_OFFSET              = 'h800;
parameter uint SRAM_SIZE                = 2048;

TL_agent

SPI Device instantiates (already handled in CIP base env) [tl_agent]({{< relref “hw/dv/sv/tl_agent/README.md” >}}) which provides the ability to drive and independently monitor random traffic via TL host interface into SPI Device.

SPI Device agent

[spi agent]({{< relref “hw/dv/sv/spi_agent/README.md” >}}) is used to drive and monitor SPI items. Following special behavior is supported in spi_host_driver

  • Toggle clock when SPI is in idle state (csb=1)
  • During data transfer, there may be very long delay between each bit or byte of data

UVM RAL Model

The SPI Device RAL model is created with the hw/dv/tools/gen_ral_pkg.py wrapper script at the start of the simulation automatically and is placed in the build area, along with a corresponding fusesoc core file. The wrapper script invokes the [regtool.py]({{< relref “util/reggen/README.md” >}}) script from within to generate the RAL model.

It can be created manually by running make ral command from the dv area.

Stimulus strategy

Test sequences

All test sequences reside in hw/ip/spi_device/dv/env/seq_lib. The spi_device_base_vseq virtual sequence is extended from cip_base_vseq and serves as a starting point. All test sequences are extended from spi_device_base_vseq. It provides commonly used handles, variables, functions and tasks that the test sequences can simple use / call. Some of the most commonly used tasks / functions are as follows:

  • spi_device_init: Fully randomize SPI Device control following CSRs and configure TX/RX SRAM FIFO size as following
    • clock polarity/phase(CPOL, CPHA), bit direction(tx/rx_order), mode, fifo interrupt level(txlvl, rxlvl)
    • TX/RX SRAM FIFO size: from 100 to 1900 and higher distribute for TX size / RX size = 1, 1/2 or 2/1
  • spi_host_xfer_bytes: Send bytes of data to DUT (SPI Device) through spi_host_driver
  • write_device_words_to_send: Write words of data to DUT CSR and update SRAM write pointer, which enables DUT to send data to SPI host.
  • read_tx/rx_avail_bytes: Read CSRs to get how many bytes of available space/data in SRAM memory

Functional coverage

To ensure high quality constrained random stimulus, it is necessary to develop a functional coverage model. The following covergroups have been developed to prove that the test intent has been adequately met:

  • common covergroup for interrupts hw/dv/sv/cip_lib/cip_base_env_cov.sv: Cover interrupt value, interrupt enable, intr_test, interrupt pin
  • TODO, add more

Self-checking strategy

Scoreboard

The spi_device_scoreboard is primarily used for end to end checking. It creates the following analysis fifos to retrieve the data monitored by corresponding interface agents:

  • tl_a_chan_fifo, tl_d_chan_fifo: These 2 fifos provide transaction items at the end of address channel and data channel respectively
  • host_spi_data_fifo, device_spi_data_fifo: These 2 fifos provides TX/RX words of data from spi_monitor

Assertions

  • TLUL assertions: The tb/spi_device_bind.sv binds the tlul_assert [assertions]({{< relref “hw/ip/tlul/doc/TlulProtocolChecker.md” >}}) to the IP to ensure TileLink interface protocol compliance.
  • Unknown checks on DUT outputs: The RTL has assertions to ensure all outputs are initialized to known values after coming out of reset.

Building and running tests

We are using our in-house developed [regression tool]({{< relref “hw/dv/tools/README.md” >}}) for building and running our tests and regressions. Please take a look at the link for detailed information on the usage, capabilities, features and known issues. Here's how to run a basic sanity test:

$ cd hw/ip/spi_device/dv
$ make TEST_NAME=spi_device_sanity

Testplan

{{< testplan “hw/ip/spi_device/data/spi_device_testplan.hjson” >}}