blob: 0dd683003f2fdbe7bf4bf6866df18b9c9613d304 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module rv_timer_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// To HW
output rv_timer_reg_pkg::rv_timer_reg2hw_t reg2hw, // Write
input rv_timer_reg_pkg::rv_timer_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import rv_timer_reg_pkg::* ;
localparam int AW = 9;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(tl_i),
.err_o(intg_err)
);
// also check for spurious write enables
logic reg_we_err;
logic [9:0] reg_we_check;
prim_reg_we_check #(
.OneHotWidth(10)
) u_prim_reg_we_check (
.clk_i(clk_i),
.rst_ni(rst_ni),
.oh_i (reg_we_check),
.en_i (reg_we && !addrmiss),
.err_o (reg_we_err)
);
logic err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_q <= '0;
end else if (intg_err || reg_we_err) begin
err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = err_q | intg_err | reg_we_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(tl_o)
);
assign tl_reg_h2d = tl_i;
assign tl_o_pre = tl_reg_d2h;
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.en_ifetch_i(prim_mubi_pkg::MuBi4False),
.intg_error_o(),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
// cdc oversampling signals
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic alert_test_we;
logic alert_test_wd;
logic ctrl_we;
logic ctrl_qs;
logic ctrl_wd;
logic intr_enable0_we;
logic intr_enable0_qs;
logic intr_enable0_wd;
logic intr_state0_we;
logic intr_state0_qs;
logic intr_state0_wd;
logic intr_test0_we;
logic intr_test0_wd;
logic cfg0_we;
logic [11:0] cfg0_prescale_qs;
logic [11:0] cfg0_prescale_wd;
logic [7:0] cfg0_step_qs;
logic [7:0] cfg0_step_wd;
logic timer_v_lower0_we;
logic [31:0] timer_v_lower0_qs;
logic [31:0] timer_v_lower0_wd;
logic timer_v_upper0_we;
logic [31:0] timer_v_upper0_qs;
logic [31:0] timer_v_upper0_wd;
logic compare_lower0_0_we;
logic [31:0] compare_lower0_0_qs;
logic [31:0] compare_lower0_0_wd;
logic compare_upper0_0_we;
logic [31:0] compare_upper0_0_qs;
logic [31:0] compare_upper0_0_wd;
// Register instances
// R[alert_test]: V(True)
logic alert_test_qe;
logic [0:0] alert_test_flds_we;
assign alert_test_qe = &alert_test_flds_we;
prim_subreg_ext #(
.DW (1)
) u_alert_test (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[0]),
.q (reg2hw.alert_test.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.qe = alert_test_qe;
// Subregister 0 of Multireg ctrl
// R[ctrl]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_ctrl (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ctrl_we),
.wd (ctrl_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ctrl[0].q),
.ds (),
// to register interface (read)
.qs (ctrl_qs)
);
// Subregister 0 of Multireg intr_enable0
// R[intr_enable0]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_intr_enable0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_enable0_we),
.wd (intr_enable0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.intr_enable0[0].q),
.ds (),
// to register interface (read)
.qs (intr_enable0_qs)
);
// Subregister 0 of Multireg intr_state0
// R[intr_state0]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_intr_state0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (intr_state0_we),
.wd (intr_state0_wd),
// from internal hardware
.de (hw2reg.intr_state0[0].de),
.d (hw2reg.intr_state0[0].d),
// to internal hardware
.qe (),
.q (reg2hw.intr_state0[0].q),
.ds (),
// to register interface (read)
.qs (intr_state0_qs)
);
// Subregister 0 of Multireg intr_test0
// R[intr_test0]: V(True)
logic intr_test0_qe;
logic [0:0] intr_test0_flds_we;
assign intr_test0_qe = &intr_test0_flds_we;
prim_subreg_ext #(
.DW (1)
) u_intr_test0 (
.re (1'b0),
.we (intr_test0_we),
.wd (intr_test0_wd),
.d ('0),
.qre (),
.qe (intr_test0_flds_we[0]),
.q (reg2hw.intr_test0[0].q),
.ds (),
.qs ()
);
assign reg2hw.intr_test0[0].qe = intr_test0_qe;
// R[cfg0]: V(False)
// F[prescale]: 11:0
prim_subreg #(
.DW (12),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (12'h0)
) u_cfg0_prescale (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg0_we),
.wd (cfg0_prescale_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.cfg0.prescale.q),
.ds (),
// to register interface (read)
.qs (cfg0_prescale_qs)
);
// F[step]: 23:16
prim_subreg #(
.DW (8),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (8'h1)
) u_cfg0_step (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (cfg0_we),
.wd (cfg0_step_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.cfg0.step.q),
.ds (),
// to register interface (read)
.qs (cfg0_step_qs)
);
// R[timer_v_lower0]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_timer_v_lower0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (timer_v_lower0_we),
.wd (timer_v_lower0_wd),
// from internal hardware
.de (hw2reg.timer_v_lower0.de),
.d (hw2reg.timer_v_lower0.d),
// to internal hardware
.qe (),
.q (reg2hw.timer_v_lower0.q),
.ds (),
// to register interface (read)
.qs (timer_v_lower0_qs)
);
// R[timer_v_upper0]: V(False)
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_timer_v_upper0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (timer_v_upper0_we),
.wd (timer_v_upper0_wd),
// from internal hardware
.de (hw2reg.timer_v_upper0.de),
.d (hw2reg.timer_v_upper0.d),
// to internal hardware
.qe (),
.q (reg2hw.timer_v_upper0.q),
.ds (),
// to register interface (read)
.qs (timer_v_upper0_qs)
);
// R[compare_lower0_0]: V(False)
logic compare_lower0_0_qe;
logic [0:0] compare_lower0_0_flds_we;
prim_flop #(
.Width(1),
.ResetValue(0)
) u_compare_lower0_00_qe (
.clk_i(clk_i),
.rst_ni(rst_ni),
.d_i(&compare_lower0_0_flds_we),
.q_o(compare_lower0_0_qe)
);
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'hffffffff)
) u_compare_lower0_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (compare_lower0_0_we),
.wd (compare_lower0_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (compare_lower0_0_flds_we[0]),
.q (reg2hw.compare_lower0_0.q),
.ds (),
// to register interface (read)
.qs (compare_lower0_0_qs)
);
assign reg2hw.compare_lower0_0.qe = compare_lower0_0_qe;
// R[compare_upper0_0]: V(False)
logic compare_upper0_0_qe;
logic [0:0] compare_upper0_0_flds_we;
prim_flop #(
.Width(1),
.ResetValue(0)
) u_compare_upper0_00_qe (
.clk_i(clk_i),
.rst_ni(rst_ni),
.d_i(&compare_upper0_0_flds_we),
.q_o(compare_upper0_0_qe)
);
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'hffffffff)
) u_compare_upper0_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (compare_upper0_0_we),
.wd (compare_upper0_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (compare_upper0_0_flds_we[0]),
.q (reg2hw.compare_upper0_0.q),
.ds (),
// to register interface (read)
.qs (compare_upper0_0_qs)
);
assign reg2hw.compare_upper0_0.qe = compare_upper0_0_qe;
logic [9:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[0] = (reg_addr == RV_TIMER_ALERT_TEST_OFFSET);
addr_hit[1] = (reg_addr == RV_TIMER_CTRL_OFFSET);
addr_hit[2] = (reg_addr == RV_TIMER_INTR_ENABLE0_OFFSET);
addr_hit[3] = (reg_addr == RV_TIMER_INTR_STATE0_OFFSET);
addr_hit[4] = (reg_addr == RV_TIMER_INTR_TEST0_OFFSET);
addr_hit[5] = (reg_addr == RV_TIMER_CFG0_OFFSET);
addr_hit[6] = (reg_addr == RV_TIMER_TIMER_V_LOWER0_OFFSET);
addr_hit[7] = (reg_addr == RV_TIMER_TIMER_V_UPPER0_OFFSET);
addr_hit[8] = (reg_addr == RV_TIMER_COMPARE_LOWER0_0_OFFSET);
addr_hit[9] = (reg_addr == RV_TIMER_COMPARE_UPPER0_0_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[0] & (|(RV_TIMER_PERMIT[0] & ~reg_be))) |
(addr_hit[1] & (|(RV_TIMER_PERMIT[1] & ~reg_be))) |
(addr_hit[2] & (|(RV_TIMER_PERMIT[2] & ~reg_be))) |
(addr_hit[3] & (|(RV_TIMER_PERMIT[3] & ~reg_be))) |
(addr_hit[4] & (|(RV_TIMER_PERMIT[4] & ~reg_be))) |
(addr_hit[5] & (|(RV_TIMER_PERMIT[5] & ~reg_be))) |
(addr_hit[6] & (|(RV_TIMER_PERMIT[6] & ~reg_be))) |
(addr_hit[7] & (|(RV_TIMER_PERMIT[7] & ~reg_be))) |
(addr_hit[8] & (|(RV_TIMER_PERMIT[8] & ~reg_be))) |
(addr_hit[9] & (|(RV_TIMER_PERMIT[9] & ~reg_be)))));
end
// Generate write-enables
assign alert_test_we = addr_hit[0] & reg_we & !reg_error;
assign alert_test_wd = reg_wdata[0];
assign ctrl_we = addr_hit[1] & reg_we & !reg_error;
assign ctrl_wd = reg_wdata[0];
assign intr_enable0_we = addr_hit[2] & reg_we & !reg_error;
assign intr_enable0_wd = reg_wdata[0];
assign intr_state0_we = addr_hit[3] & reg_we & !reg_error;
assign intr_state0_wd = reg_wdata[0];
assign intr_test0_we = addr_hit[4] & reg_we & !reg_error;
assign intr_test0_wd = reg_wdata[0];
assign cfg0_we = addr_hit[5] & reg_we & !reg_error;
assign cfg0_prescale_wd = reg_wdata[11:0];
assign cfg0_step_wd = reg_wdata[23:16];
assign timer_v_lower0_we = addr_hit[6] & reg_we & !reg_error;
assign timer_v_lower0_wd = reg_wdata[31:0];
assign timer_v_upper0_we = addr_hit[7] & reg_we & !reg_error;
assign timer_v_upper0_wd = reg_wdata[31:0];
assign compare_lower0_0_we = addr_hit[8] & reg_we & !reg_error;
assign compare_lower0_0_wd = reg_wdata[31:0];
assign compare_upper0_0_we = addr_hit[9] & reg_we & !reg_error;
assign compare_upper0_0_wd = reg_wdata[31:0];
// Assign write-enables to checker logic vector.
always_comb begin
reg_we_check = '0;
reg_we_check[0] = alert_test_we;
reg_we_check[1] = ctrl_we;
reg_we_check[2] = intr_enable0_we;
reg_we_check[3] = intr_state0_we;
reg_we_check[4] = intr_test0_we;
reg_we_check[5] = cfg0_we;
reg_we_check[6] = timer_v_lower0_we;
reg_we_check[7] = timer_v_upper0_we;
reg_we_check[8] = compare_lower0_0_we;
reg_we_check[9] = compare_upper0_0_we;
end
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = '0;
end
addr_hit[1]: begin
reg_rdata_next[0] = ctrl_qs;
end
addr_hit[2]: begin
reg_rdata_next[0] = intr_enable0_qs;
end
addr_hit[3]: begin
reg_rdata_next[0] = intr_state0_qs;
end
addr_hit[4]: begin
reg_rdata_next[0] = '0;
end
addr_hit[5]: begin
reg_rdata_next[11:0] = cfg0_prescale_qs;
reg_rdata_next[23:16] = cfg0_step_qs;
end
addr_hit[6]: begin
reg_rdata_next[31:0] = timer_v_lower0_qs;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = timer_v_upper0_qs;
end
addr_hit[8]: begin
reg_rdata_next[31:0] = compare_lower0_0_qs;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = compare_upper0_0_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// shadow busy
logic shadow_busy;
assign shadow_busy = 1'b0;
// register busy
assign reg_busy = shadow_busy;
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule