blob: 00a199eceae424f8770ab0a7c323af57f396fb50 [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
//
// Register Top module auto-generated by `reggen`
`include "prim_assert.sv"
module rv_core_ibex_cfg_reg_top (
input clk_i,
input rst_ni,
input tlul_pkg::tl_h2d_t tl_i,
output tlul_pkg::tl_d2h_t tl_o,
// Output port for window
output tlul_pkg::tl_h2d_t tl_win_o,
input tlul_pkg::tl_d2h_t tl_win_i,
// To HW
output rv_core_ibex_reg_pkg::rv_core_ibex_cfg_reg2hw_t reg2hw, // Write
input rv_core_ibex_reg_pkg::rv_core_ibex_cfg_hw2reg_t hw2reg, // Read
// Integrity check errors
output logic intg_err_o,
// Config
input devmode_i // If 1, explicit error return for unmapped register access
);
import rv_core_ibex_reg_pkg::* ;
localparam int AW = 8;
localparam int DW = 32;
localparam int DBW = DW/8; // Byte Width
// register signals
logic reg_we;
logic reg_re;
logic [AW-1:0] reg_addr;
logic [DW-1:0] reg_wdata;
logic [DBW-1:0] reg_be;
logic [DW-1:0] reg_rdata;
logic reg_error;
logic addrmiss, wr_err;
logic [DW-1:0] reg_rdata_next;
logic reg_busy;
tlul_pkg::tl_h2d_t tl_reg_h2d;
tlul_pkg::tl_d2h_t tl_reg_d2h;
// incoming payload check
logic intg_err;
tlul_cmd_intg_chk u_chk (
.tl_i(tl_i),
.err_o(intg_err)
);
// also check for spurious write enables
logic reg_we_err;
logic [24:0] reg_we_check;
prim_reg_we_check #(
.OneHotWidth(25)
) u_prim_reg_we_check (
.clk_i(clk_i),
.rst_ni(rst_ni),
.oh_i (reg_we_check),
.en_i (reg_we && !addrmiss),
.err_o (reg_we_err)
);
logic err_q;
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
err_q <= '0;
end else if (intg_err || reg_we_err) begin
err_q <= 1'b1;
end
end
// integrity error output is permanent and should be used for alert generation
// register errors are transactional
assign intg_err_o = err_q | intg_err | reg_we_err;
// outgoing integrity generation
tlul_pkg::tl_d2h_t tl_o_pre;
tlul_rsp_intg_gen #(
.EnableRspIntgGen(1),
.EnableDataIntgGen(1)
) u_rsp_intg_gen (
.tl_i(tl_o_pre),
.tl_o(tl_o)
);
tlul_pkg::tl_h2d_t tl_socket_h2d [2];
tlul_pkg::tl_d2h_t tl_socket_d2h [2];
logic [0:0] reg_steer;
// socket_1n connection
assign tl_reg_h2d = tl_socket_h2d[1];
assign tl_socket_d2h[1] = tl_reg_d2h;
assign tl_win_o = tl_socket_h2d[0];
assign tl_socket_d2h[0] = tl_win_i;
// Create Socket_1n
tlul_socket_1n #(
.N (2),
.HReqPass (1'b1),
.HRspPass (1'b1),
.DReqPass ({2{1'b1}}),
.DRspPass ({2{1'b1}}),
.HReqDepth (4'h0),
.HRspDepth (4'h0),
.DReqDepth ({2{4'h0}}),
.DRspDepth ({2{4'h0}}),
.ExplicitErrs (1'b0)
) u_socket (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_h_i (tl_i),
.tl_h_o (tl_o_pre),
.tl_d_o (tl_socket_h2d),
.tl_d_i (tl_socket_d2h),
.dev_select_i (reg_steer)
);
// Create steering logic
always_comb begin
reg_steer =
tl_i.a_address[AW-1:0] inside {[128:159]} ? 1'd0 :
// Default set to register
1'd1;
// Override this in case of an integrity error
if (intg_err) begin
reg_steer = 1'd1;
end
end
tlul_adapter_reg #(
.RegAw(AW),
.RegDw(DW),
.EnableDataIntgGen(0)
) u_reg_if (
.clk_i (clk_i),
.rst_ni (rst_ni),
.tl_i (tl_reg_h2d),
.tl_o (tl_reg_d2h),
.en_ifetch_i(prim_mubi_pkg::MuBi4False),
.intg_error_o(),
.we_o (reg_we),
.re_o (reg_re),
.addr_o (reg_addr),
.wdata_o (reg_wdata),
.be_o (reg_be),
.busy_i (reg_busy),
.rdata_i (reg_rdata),
.error_i (reg_error)
);
// cdc oversampling signals
assign reg_rdata = reg_rdata_next ;
assign reg_error = (devmode_i & addrmiss) | wr_err | intg_err;
// Define SW related signals
// Format: <reg>_<field>_{wd|we|qs}
// or <reg>_{wd|we|qs} if field == 1 or 0
logic alert_test_we;
logic alert_test_fatal_sw_err_wd;
logic alert_test_recov_sw_err_wd;
logic alert_test_fatal_hw_err_wd;
logic alert_test_recov_hw_err_wd;
logic sw_recov_err_we;
logic [3:0] sw_recov_err_qs;
logic [3:0] sw_recov_err_wd;
logic sw_fatal_err_we;
logic [3:0] sw_fatal_err_qs;
logic [3:0] sw_fatal_err_wd;
logic ibus_regwen_0_we;
logic ibus_regwen_0_qs;
logic ibus_regwen_0_wd;
logic ibus_regwen_1_we;
logic ibus_regwen_1_qs;
logic ibus_regwen_1_wd;
logic ibus_addr_en_0_we;
logic ibus_addr_en_0_qs;
logic ibus_addr_en_0_wd;
logic ibus_addr_en_1_we;
logic ibus_addr_en_1_qs;
logic ibus_addr_en_1_wd;
logic ibus_addr_matching_0_we;
logic [31:0] ibus_addr_matching_0_qs;
logic [31:0] ibus_addr_matching_0_wd;
logic ibus_addr_matching_1_we;
logic [31:0] ibus_addr_matching_1_qs;
logic [31:0] ibus_addr_matching_1_wd;
logic ibus_remap_addr_0_we;
logic [31:0] ibus_remap_addr_0_qs;
logic [31:0] ibus_remap_addr_0_wd;
logic ibus_remap_addr_1_we;
logic [31:0] ibus_remap_addr_1_qs;
logic [31:0] ibus_remap_addr_1_wd;
logic dbus_regwen_0_we;
logic dbus_regwen_0_qs;
logic dbus_regwen_0_wd;
logic dbus_regwen_1_we;
logic dbus_regwen_1_qs;
logic dbus_regwen_1_wd;
logic dbus_addr_en_0_we;
logic dbus_addr_en_0_qs;
logic dbus_addr_en_0_wd;
logic dbus_addr_en_1_we;
logic dbus_addr_en_1_qs;
logic dbus_addr_en_1_wd;
logic dbus_addr_matching_0_we;
logic [31:0] dbus_addr_matching_0_qs;
logic [31:0] dbus_addr_matching_0_wd;
logic dbus_addr_matching_1_we;
logic [31:0] dbus_addr_matching_1_qs;
logic [31:0] dbus_addr_matching_1_wd;
logic dbus_remap_addr_0_we;
logic [31:0] dbus_remap_addr_0_qs;
logic [31:0] dbus_remap_addr_0_wd;
logic dbus_remap_addr_1_we;
logic [31:0] dbus_remap_addr_1_qs;
logic [31:0] dbus_remap_addr_1_wd;
logic nmi_enable_we;
logic nmi_enable_alert_en_qs;
logic nmi_enable_alert_en_wd;
logic nmi_enable_wdog_en_qs;
logic nmi_enable_wdog_en_wd;
logic nmi_state_we;
logic nmi_state_alert_qs;
logic nmi_state_alert_wd;
logic nmi_state_wdog_qs;
logic nmi_state_wdog_wd;
logic err_status_we;
logic err_status_reg_intg_err_qs;
logic err_status_reg_intg_err_wd;
logic err_status_fatal_intg_err_qs;
logic err_status_fatal_intg_err_wd;
logic err_status_fatal_core_err_qs;
logic err_status_fatal_core_err_wd;
logic err_status_recov_core_err_qs;
logic err_status_recov_core_err_wd;
logic rnd_data_re;
logic [31:0] rnd_data_qs;
logic rnd_status_re;
logic rnd_status_rnd_data_valid_qs;
logic rnd_status_rnd_data_fips_qs;
logic fpga_info_re;
logic [31:0] fpga_info_qs;
// Register instances
// R[alert_test]: V(True)
logic alert_test_qe;
logic [3:0] alert_test_flds_we;
assign alert_test_qe = &alert_test_flds_we;
// F[fatal_sw_err]: 0:0
prim_subreg_ext #(
.DW (1)
) u_alert_test_fatal_sw_err (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_fatal_sw_err_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[0]),
.q (reg2hw.alert_test.fatal_sw_err.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.fatal_sw_err.qe = alert_test_qe;
// F[recov_sw_err]: 1:1
prim_subreg_ext #(
.DW (1)
) u_alert_test_recov_sw_err (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_recov_sw_err_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[1]),
.q (reg2hw.alert_test.recov_sw_err.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.recov_sw_err.qe = alert_test_qe;
// F[fatal_hw_err]: 2:2
prim_subreg_ext #(
.DW (1)
) u_alert_test_fatal_hw_err (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_fatal_hw_err_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[2]),
.q (reg2hw.alert_test.fatal_hw_err.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.fatal_hw_err.qe = alert_test_qe;
// F[recov_hw_err]: 3:3
prim_subreg_ext #(
.DW (1)
) u_alert_test_recov_hw_err (
.re (1'b0),
.we (alert_test_we),
.wd (alert_test_recov_hw_err_wd),
.d ('0),
.qre (),
.qe (alert_test_flds_we[3]),
.q (reg2hw.alert_test.recov_hw_err.q),
.ds (),
.qs ()
);
assign reg2hw.alert_test.recov_hw_err.qe = alert_test_qe;
// R[sw_recov_err]: V(False)
prim_subreg #(
.DW (4),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (4'h9)
) u_sw_recov_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (sw_recov_err_we),
.wd (sw_recov_err_wd),
// from internal hardware
.de (hw2reg.sw_recov_err.de),
.d (hw2reg.sw_recov_err.d),
// to internal hardware
.qe (),
.q (reg2hw.sw_recov_err.q),
.ds (),
// to register interface (read)
.qs (sw_recov_err_qs)
);
// R[sw_fatal_err]: V(False)
prim_subreg #(
.DW (4),
.SwAccess(prim_subreg_pkg::SwAccessW0C),
.RESVAL (4'h9)
) u_sw_fatal_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (sw_fatal_err_we),
.wd (sw_fatal_err_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.sw_fatal_err.q),
.ds (),
// to register interface (read)
.qs (sw_fatal_err_qs)
);
// Subregister 0 of Multireg ibus_regwen
// R[ibus_regwen_0]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW0C),
.RESVAL (1'h1)
) u_ibus_regwen_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ibus_regwen_0_we),
.wd (ibus_regwen_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (ibus_regwen_0_qs)
);
// Subregister 1 of Multireg ibus_regwen
// R[ibus_regwen_1]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW0C),
.RESVAL (1'h1)
) u_ibus_regwen_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ibus_regwen_1_we),
.wd (ibus_regwen_1_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (ibus_regwen_1_qs)
);
// Subregister 0 of Multireg ibus_addr_en
// R[ibus_addr_en_0]: V(False)
// Create REGWEN-gated WE signal
logic ibus_addr_en_0_gated_we;
assign ibus_addr_en_0_gated_we = ibus_addr_en_0_we & ibus_regwen_0_qs;
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_ibus_addr_en_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ibus_addr_en_0_gated_we),
.wd (ibus_addr_en_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ibus_addr_en[0].q),
.ds (),
// to register interface (read)
.qs (ibus_addr_en_0_qs)
);
// Subregister 1 of Multireg ibus_addr_en
// R[ibus_addr_en_1]: V(False)
// Create REGWEN-gated WE signal
logic ibus_addr_en_1_gated_we;
assign ibus_addr_en_1_gated_we = ibus_addr_en_1_we & ibus_regwen_1_qs;
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_ibus_addr_en_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ibus_addr_en_1_gated_we),
.wd (ibus_addr_en_1_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ibus_addr_en[1].q),
.ds (),
// to register interface (read)
.qs (ibus_addr_en_1_qs)
);
// Subregister 0 of Multireg ibus_addr_matching
// R[ibus_addr_matching_0]: V(False)
// Create REGWEN-gated WE signal
logic ibus_addr_matching_0_gated_we;
assign ibus_addr_matching_0_gated_we = ibus_addr_matching_0_we & ibus_regwen_0_qs;
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_ibus_addr_matching_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ibus_addr_matching_0_gated_we),
.wd (ibus_addr_matching_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ibus_addr_matching[0].q),
.ds (),
// to register interface (read)
.qs (ibus_addr_matching_0_qs)
);
// Subregister 1 of Multireg ibus_addr_matching
// R[ibus_addr_matching_1]: V(False)
// Create REGWEN-gated WE signal
logic ibus_addr_matching_1_gated_we;
assign ibus_addr_matching_1_gated_we = ibus_addr_matching_1_we & ibus_regwen_1_qs;
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_ibus_addr_matching_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ibus_addr_matching_1_gated_we),
.wd (ibus_addr_matching_1_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ibus_addr_matching[1].q),
.ds (),
// to register interface (read)
.qs (ibus_addr_matching_1_qs)
);
// Subregister 0 of Multireg ibus_remap_addr
// R[ibus_remap_addr_0]: V(False)
// Create REGWEN-gated WE signal
logic ibus_remap_addr_0_gated_we;
assign ibus_remap_addr_0_gated_we = ibus_remap_addr_0_we & ibus_regwen_0_qs;
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_ibus_remap_addr_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ibus_remap_addr_0_gated_we),
.wd (ibus_remap_addr_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ibus_remap_addr[0].q),
.ds (),
// to register interface (read)
.qs (ibus_remap_addr_0_qs)
);
// Subregister 1 of Multireg ibus_remap_addr
// R[ibus_remap_addr_1]: V(False)
// Create REGWEN-gated WE signal
logic ibus_remap_addr_1_gated_we;
assign ibus_remap_addr_1_gated_we = ibus_remap_addr_1_we & ibus_regwen_1_qs;
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_ibus_remap_addr_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (ibus_remap_addr_1_gated_we),
.wd (ibus_remap_addr_1_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.ibus_remap_addr[1].q),
.ds (),
// to register interface (read)
.qs (ibus_remap_addr_1_qs)
);
// Subregister 0 of Multireg dbus_regwen
// R[dbus_regwen_0]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW0C),
.RESVAL (1'h1)
) u_dbus_regwen_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (dbus_regwen_0_we),
.wd (dbus_regwen_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (dbus_regwen_0_qs)
);
// Subregister 1 of Multireg dbus_regwen
// R[dbus_regwen_1]: V(False)
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW0C),
.RESVAL (1'h1)
) u_dbus_regwen_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (dbus_regwen_1_we),
.wd (dbus_regwen_1_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (dbus_regwen_1_qs)
);
// Subregister 0 of Multireg dbus_addr_en
// R[dbus_addr_en_0]: V(False)
// Create REGWEN-gated WE signal
logic dbus_addr_en_0_gated_we;
assign dbus_addr_en_0_gated_we = dbus_addr_en_0_we & dbus_regwen_0_qs;
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_dbus_addr_en_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (dbus_addr_en_0_gated_we),
.wd (dbus_addr_en_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.dbus_addr_en[0].q),
.ds (),
// to register interface (read)
.qs (dbus_addr_en_0_qs)
);
// Subregister 1 of Multireg dbus_addr_en
// R[dbus_addr_en_1]: V(False)
// Create REGWEN-gated WE signal
logic dbus_addr_en_1_gated_we;
assign dbus_addr_en_1_gated_we = dbus_addr_en_1_we & dbus_regwen_1_qs;
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (1'h0)
) u_dbus_addr_en_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (dbus_addr_en_1_gated_we),
.wd (dbus_addr_en_1_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.dbus_addr_en[1].q),
.ds (),
// to register interface (read)
.qs (dbus_addr_en_1_qs)
);
// Subregister 0 of Multireg dbus_addr_matching
// R[dbus_addr_matching_0]: V(False)
// Create REGWEN-gated WE signal
logic dbus_addr_matching_0_gated_we;
assign dbus_addr_matching_0_gated_we = dbus_addr_matching_0_we & dbus_regwen_0_qs;
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_dbus_addr_matching_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (dbus_addr_matching_0_gated_we),
.wd (dbus_addr_matching_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.dbus_addr_matching[0].q),
.ds (),
// to register interface (read)
.qs (dbus_addr_matching_0_qs)
);
// Subregister 1 of Multireg dbus_addr_matching
// R[dbus_addr_matching_1]: V(False)
// Create REGWEN-gated WE signal
logic dbus_addr_matching_1_gated_we;
assign dbus_addr_matching_1_gated_we = dbus_addr_matching_1_we & dbus_regwen_1_qs;
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_dbus_addr_matching_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (dbus_addr_matching_1_gated_we),
.wd (dbus_addr_matching_1_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.dbus_addr_matching[1].q),
.ds (),
// to register interface (read)
.qs (dbus_addr_matching_1_qs)
);
// Subregister 0 of Multireg dbus_remap_addr
// R[dbus_remap_addr_0]: V(False)
// Create REGWEN-gated WE signal
logic dbus_remap_addr_0_gated_we;
assign dbus_remap_addr_0_gated_we = dbus_remap_addr_0_we & dbus_regwen_0_qs;
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_dbus_remap_addr_0 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (dbus_remap_addr_0_gated_we),
.wd (dbus_remap_addr_0_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.dbus_remap_addr[0].q),
.ds (),
// to register interface (read)
.qs (dbus_remap_addr_0_qs)
);
// Subregister 1 of Multireg dbus_remap_addr
// R[dbus_remap_addr_1]: V(False)
// Create REGWEN-gated WE signal
logic dbus_remap_addr_1_gated_we;
assign dbus_remap_addr_1_gated_we = dbus_remap_addr_1_we & dbus_regwen_1_qs;
prim_subreg #(
.DW (32),
.SwAccess(prim_subreg_pkg::SwAccessRW),
.RESVAL (32'h0)
) u_dbus_remap_addr_1 (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (dbus_remap_addr_1_gated_we),
.wd (dbus_remap_addr_1_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.dbus_remap_addr[1].q),
.ds (),
// to register interface (read)
.qs (dbus_remap_addr_1_qs)
);
// R[nmi_enable]: V(False)
// F[alert_en]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1S),
.RESVAL (1'h0)
) u_nmi_enable_alert_en (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (nmi_enable_we),
.wd (nmi_enable_alert_en_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.nmi_enable.alert_en.q),
.ds (),
// to register interface (read)
.qs (nmi_enable_alert_en_qs)
);
// F[wdog_en]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1S),
.RESVAL (1'h0)
) u_nmi_enable_wdog_en (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (nmi_enable_we),
.wd (nmi_enable_wdog_en_wd),
// from internal hardware
.de (1'b0),
.d ('0),
// to internal hardware
.qe (),
.q (reg2hw.nmi_enable.wdog_en.q),
.ds (),
// to register interface (read)
.qs (nmi_enable_wdog_en_qs)
);
// R[nmi_state]: V(False)
// F[alert]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_nmi_state_alert (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (nmi_state_we),
.wd (nmi_state_alert_wd),
// from internal hardware
.de (hw2reg.nmi_state.alert.de),
.d (hw2reg.nmi_state.alert.d),
// to internal hardware
.qe (),
.q (reg2hw.nmi_state.alert.q),
.ds (),
// to register interface (read)
.qs (nmi_state_alert_qs)
);
// F[wdog]: 1:1
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_nmi_state_wdog (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (nmi_state_we),
.wd (nmi_state_wdog_wd),
// from internal hardware
.de (hw2reg.nmi_state.wdog.de),
.d (hw2reg.nmi_state.wdog.d),
// to internal hardware
.qe (),
.q (reg2hw.nmi_state.wdog.q),
.ds (),
// to register interface (read)
.qs (nmi_state_wdog_qs)
);
// R[err_status]: V(False)
// F[reg_intg_err]: 0:0
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_err_status_reg_intg_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (err_status_we),
.wd (err_status_reg_intg_err_wd),
// from internal hardware
.de (hw2reg.err_status.reg_intg_err.de),
.d (hw2reg.err_status.reg_intg_err.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (err_status_reg_intg_err_qs)
);
// F[fatal_intg_err]: 8:8
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_err_status_fatal_intg_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (err_status_we),
.wd (err_status_fatal_intg_err_wd),
// from internal hardware
.de (hw2reg.err_status.fatal_intg_err.de),
.d (hw2reg.err_status.fatal_intg_err.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (err_status_fatal_intg_err_qs)
);
// F[fatal_core_err]: 9:9
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_err_status_fatal_core_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (err_status_we),
.wd (err_status_fatal_core_err_wd),
// from internal hardware
.de (hw2reg.err_status.fatal_core_err.de),
.d (hw2reg.err_status.fatal_core_err.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (err_status_fatal_core_err_qs)
);
// F[recov_core_err]: 10:10
prim_subreg #(
.DW (1),
.SwAccess(prim_subreg_pkg::SwAccessW1C),
.RESVAL (1'h0)
) u_err_status_recov_core_err (
.clk_i (clk_i),
.rst_ni (rst_ni),
// from register interface
.we (err_status_we),
.wd (err_status_recov_core_err_wd),
// from internal hardware
.de (hw2reg.err_status.recov_core_err.de),
.d (hw2reg.err_status.recov_core_err.d),
// to internal hardware
.qe (),
.q (),
.ds (),
// to register interface (read)
.qs (err_status_recov_core_err_qs)
);
// R[rnd_data]: V(True)
prim_subreg_ext #(
.DW (32)
) u_rnd_data (
.re (rnd_data_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.rnd_data.d),
.qre (reg2hw.rnd_data.re),
.qe (),
.q (reg2hw.rnd_data.q),
.ds (),
.qs (rnd_data_qs)
);
// R[rnd_status]: V(True)
// F[rnd_data_valid]: 0:0
prim_subreg_ext #(
.DW (1)
) u_rnd_status_rnd_data_valid (
.re (rnd_status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.rnd_status.rnd_data_valid.d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (rnd_status_rnd_data_valid_qs)
);
// F[rnd_data_fips]: 1:1
prim_subreg_ext #(
.DW (1)
) u_rnd_status_rnd_data_fips (
.re (rnd_status_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.rnd_status.rnd_data_fips.d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (rnd_status_rnd_data_fips_qs)
);
// R[fpga_info]: V(True)
prim_subreg_ext #(
.DW (32)
) u_fpga_info (
.re (fpga_info_re),
.we (1'b0),
.wd ('0),
.d (hw2reg.fpga_info.d),
.qre (),
.qe (),
.q (),
.ds (),
.qs (fpga_info_qs)
);
logic [24:0] addr_hit;
always_comb begin
addr_hit = '0;
addr_hit[ 0] = (reg_addr == RV_CORE_IBEX_ALERT_TEST_OFFSET);
addr_hit[ 1] = (reg_addr == RV_CORE_IBEX_SW_RECOV_ERR_OFFSET);
addr_hit[ 2] = (reg_addr == RV_CORE_IBEX_SW_FATAL_ERR_OFFSET);
addr_hit[ 3] = (reg_addr == RV_CORE_IBEX_IBUS_REGWEN_0_OFFSET);
addr_hit[ 4] = (reg_addr == RV_CORE_IBEX_IBUS_REGWEN_1_OFFSET);
addr_hit[ 5] = (reg_addr == RV_CORE_IBEX_IBUS_ADDR_EN_0_OFFSET);
addr_hit[ 6] = (reg_addr == RV_CORE_IBEX_IBUS_ADDR_EN_1_OFFSET);
addr_hit[ 7] = (reg_addr == RV_CORE_IBEX_IBUS_ADDR_MATCHING_0_OFFSET);
addr_hit[ 8] = (reg_addr == RV_CORE_IBEX_IBUS_ADDR_MATCHING_1_OFFSET);
addr_hit[ 9] = (reg_addr == RV_CORE_IBEX_IBUS_REMAP_ADDR_0_OFFSET);
addr_hit[10] = (reg_addr == RV_CORE_IBEX_IBUS_REMAP_ADDR_1_OFFSET);
addr_hit[11] = (reg_addr == RV_CORE_IBEX_DBUS_REGWEN_0_OFFSET);
addr_hit[12] = (reg_addr == RV_CORE_IBEX_DBUS_REGWEN_1_OFFSET);
addr_hit[13] = (reg_addr == RV_CORE_IBEX_DBUS_ADDR_EN_0_OFFSET);
addr_hit[14] = (reg_addr == RV_CORE_IBEX_DBUS_ADDR_EN_1_OFFSET);
addr_hit[15] = (reg_addr == RV_CORE_IBEX_DBUS_ADDR_MATCHING_0_OFFSET);
addr_hit[16] = (reg_addr == RV_CORE_IBEX_DBUS_ADDR_MATCHING_1_OFFSET);
addr_hit[17] = (reg_addr == RV_CORE_IBEX_DBUS_REMAP_ADDR_0_OFFSET);
addr_hit[18] = (reg_addr == RV_CORE_IBEX_DBUS_REMAP_ADDR_1_OFFSET);
addr_hit[19] = (reg_addr == RV_CORE_IBEX_NMI_ENABLE_OFFSET);
addr_hit[20] = (reg_addr == RV_CORE_IBEX_NMI_STATE_OFFSET);
addr_hit[21] = (reg_addr == RV_CORE_IBEX_ERR_STATUS_OFFSET);
addr_hit[22] = (reg_addr == RV_CORE_IBEX_RND_DATA_OFFSET);
addr_hit[23] = (reg_addr == RV_CORE_IBEX_RND_STATUS_OFFSET);
addr_hit[24] = (reg_addr == RV_CORE_IBEX_FPGA_INFO_OFFSET);
end
assign addrmiss = (reg_re || reg_we) ? ~|addr_hit : 1'b0 ;
// Check sub-word write is permitted
always_comb begin
wr_err = (reg_we &
((addr_hit[ 0] & (|(RV_CORE_IBEX_CFG_PERMIT[ 0] & ~reg_be))) |
(addr_hit[ 1] & (|(RV_CORE_IBEX_CFG_PERMIT[ 1] & ~reg_be))) |
(addr_hit[ 2] & (|(RV_CORE_IBEX_CFG_PERMIT[ 2] & ~reg_be))) |
(addr_hit[ 3] & (|(RV_CORE_IBEX_CFG_PERMIT[ 3] & ~reg_be))) |
(addr_hit[ 4] & (|(RV_CORE_IBEX_CFG_PERMIT[ 4] & ~reg_be))) |
(addr_hit[ 5] & (|(RV_CORE_IBEX_CFG_PERMIT[ 5] & ~reg_be))) |
(addr_hit[ 6] & (|(RV_CORE_IBEX_CFG_PERMIT[ 6] & ~reg_be))) |
(addr_hit[ 7] & (|(RV_CORE_IBEX_CFG_PERMIT[ 7] & ~reg_be))) |
(addr_hit[ 8] & (|(RV_CORE_IBEX_CFG_PERMIT[ 8] & ~reg_be))) |
(addr_hit[ 9] & (|(RV_CORE_IBEX_CFG_PERMIT[ 9] & ~reg_be))) |
(addr_hit[10] & (|(RV_CORE_IBEX_CFG_PERMIT[10] & ~reg_be))) |
(addr_hit[11] & (|(RV_CORE_IBEX_CFG_PERMIT[11] & ~reg_be))) |
(addr_hit[12] & (|(RV_CORE_IBEX_CFG_PERMIT[12] & ~reg_be))) |
(addr_hit[13] & (|(RV_CORE_IBEX_CFG_PERMIT[13] & ~reg_be))) |
(addr_hit[14] & (|(RV_CORE_IBEX_CFG_PERMIT[14] & ~reg_be))) |
(addr_hit[15] & (|(RV_CORE_IBEX_CFG_PERMIT[15] & ~reg_be))) |
(addr_hit[16] & (|(RV_CORE_IBEX_CFG_PERMIT[16] & ~reg_be))) |
(addr_hit[17] & (|(RV_CORE_IBEX_CFG_PERMIT[17] & ~reg_be))) |
(addr_hit[18] & (|(RV_CORE_IBEX_CFG_PERMIT[18] & ~reg_be))) |
(addr_hit[19] & (|(RV_CORE_IBEX_CFG_PERMIT[19] & ~reg_be))) |
(addr_hit[20] & (|(RV_CORE_IBEX_CFG_PERMIT[20] & ~reg_be))) |
(addr_hit[21] & (|(RV_CORE_IBEX_CFG_PERMIT[21] & ~reg_be))) |
(addr_hit[22] & (|(RV_CORE_IBEX_CFG_PERMIT[22] & ~reg_be))) |
(addr_hit[23] & (|(RV_CORE_IBEX_CFG_PERMIT[23] & ~reg_be))) |
(addr_hit[24] & (|(RV_CORE_IBEX_CFG_PERMIT[24] & ~reg_be)))));
end
// Generate write-enables
assign alert_test_we = addr_hit[0] & reg_we & !reg_error;
assign alert_test_fatal_sw_err_wd = reg_wdata[0];
assign alert_test_recov_sw_err_wd = reg_wdata[1];
assign alert_test_fatal_hw_err_wd = reg_wdata[2];
assign alert_test_recov_hw_err_wd = reg_wdata[3];
assign sw_recov_err_we = addr_hit[1] & reg_we & !reg_error;
assign sw_recov_err_wd = reg_wdata[3:0];
assign sw_fatal_err_we = addr_hit[2] & reg_we & !reg_error;
assign sw_fatal_err_wd = reg_wdata[3:0];
assign ibus_regwen_0_we = addr_hit[3] & reg_we & !reg_error;
assign ibus_regwen_0_wd = reg_wdata[0];
assign ibus_regwen_1_we = addr_hit[4] & reg_we & !reg_error;
assign ibus_regwen_1_wd = reg_wdata[0];
assign ibus_addr_en_0_we = addr_hit[5] & reg_we & !reg_error;
assign ibus_addr_en_0_wd = reg_wdata[0];
assign ibus_addr_en_1_we = addr_hit[6] & reg_we & !reg_error;
assign ibus_addr_en_1_wd = reg_wdata[0];
assign ibus_addr_matching_0_we = addr_hit[7] & reg_we & !reg_error;
assign ibus_addr_matching_0_wd = reg_wdata[31:0];
assign ibus_addr_matching_1_we = addr_hit[8] & reg_we & !reg_error;
assign ibus_addr_matching_1_wd = reg_wdata[31:0];
assign ibus_remap_addr_0_we = addr_hit[9] & reg_we & !reg_error;
assign ibus_remap_addr_0_wd = reg_wdata[31:0];
assign ibus_remap_addr_1_we = addr_hit[10] & reg_we & !reg_error;
assign ibus_remap_addr_1_wd = reg_wdata[31:0];
assign dbus_regwen_0_we = addr_hit[11] & reg_we & !reg_error;
assign dbus_regwen_0_wd = reg_wdata[0];
assign dbus_regwen_1_we = addr_hit[12] & reg_we & !reg_error;
assign dbus_regwen_1_wd = reg_wdata[0];
assign dbus_addr_en_0_we = addr_hit[13] & reg_we & !reg_error;
assign dbus_addr_en_0_wd = reg_wdata[0];
assign dbus_addr_en_1_we = addr_hit[14] & reg_we & !reg_error;
assign dbus_addr_en_1_wd = reg_wdata[0];
assign dbus_addr_matching_0_we = addr_hit[15] & reg_we & !reg_error;
assign dbus_addr_matching_0_wd = reg_wdata[31:0];
assign dbus_addr_matching_1_we = addr_hit[16] & reg_we & !reg_error;
assign dbus_addr_matching_1_wd = reg_wdata[31:0];
assign dbus_remap_addr_0_we = addr_hit[17] & reg_we & !reg_error;
assign dbus_remap_addr_0_wd = reg_wdata[31:0];
assign dbus_remap_addr_1_we = addr_hit[18] & reg_we & !reg_error;
assign dbus_remap_addr_1_wd = reg_wdata[31:0];
assign nmi_enable_we = addr_hit[19] & reg_we & !reg_error;
assign nmi_enable_alert_en_wd = reg_wdata[0];
assign nmi_enable_wdog_en_wd = reg_wdata[1];
assign nmi_state_we = addr_hit[20] & reg_we & !reg_error;
assign nmi_state_alert_wd = reg_wdata[0];
assign nmi_state_wdog_wd = reg_wdata[1];
assign err_status_we = addr_hit[21] & reg_we & !reg_error;
assign err_status_reg_intg_err_wd = reg_wdata[0];
assign err_status_fatal_intg_err_wd = reg_wdata[8];
assign err_status_fatal_core_err_wd = reg_wdata[9];
assign err_status_recov_core_err_wd = reg_wdata[10];
assign rnd_data_re = addr_hit[22] & reg_re & !reg_error;
assign rnd_status_re = addr_hit[23] & reg_re & !reg_error;
assign fpga_info_re = addr_hit[24] & reg_re & !reg_error;
// Assign write-enables to checker logic vector.
always_comb begin
reg_we_check = '0;
reg_we_check[0] = alert_test_we;
reg_we_check[1] = sw_recov_err_we;
reg_we_check[2] = sw_fatal_err_we;
reg_we_check[3] = ibus_regwen_0_we;
reg_we_check[4] = ibus_regwen_1_we;
reg_we_check[5] = ibus_addr_en_0_gated_we;
reg_we_check[6] = ibus_addr_en_1_gated_we;
reg_we_check[7] = ibus_addr_matching_0_gated_we;
reg_we_check[8] = ibus_addr_matching_1_gated_we;
reg_we_check[9] = ibus_remap_addr_0_gated_we;
reg_we_check[10] = ibus_remap_addr_1_gated_we;
reg_we_check[11] = dbus_regwen_0_we;
reg_we_check[12] = dbus_regwen_1_we;
reg_we_check[13] = dbus_addr_en_0_gated_we;
reg_we_check[14] = dbus_addr_en_1_gated_we;
reg_we_check[15] = dbus_addr_matching_0_gated_we;
reg_we_check[16] = dbus_addr_matching_1_gated_we;
reg_we_check[17] = dbus_remap_addr_0_gated_we;
reg_we_check[18] = dbus_remap_addr_1_gated_we;
reg_we_check[19] = nmi_enable_we;
reg_we_check[20] = nmi_state_we;
reg_we_check[21] = err_status_we;
reg_we_check[22] = 1'b0;
reg_we_check[23] = 1'b0;
reg_we_check[24] = 1'b0;
end
// Read data return
always_comb begin
reg_rdata_next = '0;
unique case (1'b1)
addr_hit[0]: begin
reg_rdata_next[0] = '0;
reg_rdata_next[1] = '0;
reg_rdata_next[2] = '0;
reg_rdata_next[3] = '0;
end
addr_hit[1]: begin
reg_rdata_next[3:0] = sw_recov_err_qs;
end
addr_hit[2]: begin
reg_rdata_next[3:0] = sw_fatal_err_qs;
end
addr_hit[3]: begin
reg_rdata_next[0] = ibus_regwen_0_qs;
end
addr_hit[4]: begin
reg_rdata_next[0] = ibus_regwen_1_qs;
end
addr_hit[5]: begin
reg_rdata_next[0] = ibus_addr_en_0_qs;
end
addr_hit[6]: begin
reg_rdata_next[0] = ibus_addr_en_1_qs;
end
addr_hit[7]: begin
reg_rdata_next[31:0] = ibus_addr_matching_0_qs;
end
addr_hit[8]: begin
reg_rdata_next[31:0] = ibus_addr_matching_1_qs;
end
addr_hit[9]: begin
reg_rdata_next[31:0] = ibus_remap_addr_0_qs;
end
addr_hit[10]: begin
reg_rdata_next[31:0] = ibus_remap_addr_1_qs;
end
addr_hit[11]: begin
reg_rdata_next[0] = dbus_regwen_0_qs;
end
addr_hit[12]: begin
reg_rdata_next[0] = dbus_regwen_1_qs;
end
addr_hit[13]: begin
reg_rdata_next[0] = dbus_addr_en_0_qs;
end
addr_hit[14]: begin
reg_rdata_next[0] = dbus_addr_en_1_qs;
end
addr_hit[15]: begin
reg_rdata_next[31:0] = dbus_addr_matching_0_qs;
end
addr_hit[16]: begin
reg_rdata_next[31:0] = dbus_addr_matching_1_qs;
end
addr_hit[17]: begin
reg_rdata_next[31:0] = dbus_remap_addr_0_qs;
end
addr_hit[18]: begin
reg_rdata_next[31:0] = dbus_remap_addr_1_qs;
end
addr_hit[19]: begin
reg_rdata_next[0] = nmi_enable_alert_en_qs;
reg_rdata_next[1] = nmi_enable_wdog_en_qs;
end
addr_hit[20]: begin
reg_rdata_next[0] = nmi_state_alert_qs;
reg_rdata_next[1] = nmi_state_wdog_qs;
end
addr_hit[21]: begin
reg_rdata_next[0] = err_status_reg_intg_err_qs;
reg_rdata_next[8] = err_status_fatal_intg_err_qs;
reg_rdata_next[9] = err_status_fatal_core_err_qs;
reg_rdata_next[10] = err_status_recov_core_err_qs;
end
addr_hit[22]: begin
reg_rdata_next[31:0] = rnd_data_qs;
end
addr_hit[23]: begin
reg_rdata_next[0] = rnd_status_rnd_data_valid_qs;
reg_rdata_next[1] = rnd_status_rnd_data_fips_qs;
end
addr_hit[24]: begin
reg_rdata_next[31:0] = fpga_info_qs;
end
default: begin
reg_rdata_next = '1;
end
endcase
end
// shadow busy
logic shadow_busy;
assign shadow_busy = 1'b0;
// register busy
assign reg_busy = shadow_busy;
// Unused signal tieoff
// wdata / byte enable are not always fully used
// add a blanket unused statement to handle lint waivers
logic unused_wdata;
logic unused_be;
assign unused_wdata = ^reg_wdata;
assign unused_be = ^reg_be;
// Assertions for Register Interface
`ASSERT_PULSE(wePulse, reg_we, clk_i, !rst_ni)
`ASSERT_PULSE(rePulse, reg_re, clk_i, !rst_ni)
`ASSERT(reAfterRv, $rose(reg_re || reg_we) |=> tl_o_pre.d_valid, clk_i, !rst_ni)
`ASSERT(en2addrHit, (reg_we || reg_re) |-> $onehot0(addr_hit), clk_i, !rst_ni)
// this is formulated as an assumption such that the FPV testbenches do disprove this
// property by mistake
//`ASSUME(reqParity, tl_reg_h2d.a_valid |-> tl_reg_h2d.a_user.chk_en == tlul_pkg::CheckDis)
endmodule