blob: 752e9934818a6fd7c2436be787d58392f2e7594f [file] [log] [blame]
// Copyright lowRISC contributors.
// Licensed under the Apache License, Version 2.0, see LICENSE for details.
// SPDX-License-Identifier: Apache-2.0
#include "sw/device/silicon_creator/lib/shutdown.h"
#include <assert.h>
#include "sw/device/lib/arch/device.h"
#include "sw/device/lib/base/abs_mmio.h"
#include "sw/device/lib/base/bitfield.h"
#include "sw/device/lib/base/csr.h"
#include "sw/device/lib/base/hardened.h"
#include "sw/device/lib/base/macros.h"
#include "sw/device/lib/base/memory.h"
#include "sw/device/lib/base/multibits.h"
#include "sw/device/lib/base/stdasm.h"
#include "sw/device/silicon_creator/lib/drivers/alert.h"
#include "sw/device/silicon_creator/lib/drivers/lifecycle.h"
#include "sw/device/silicon_creator/lib/drivers/otp.h"
#include "sw/device/silicon_creator/lib/epmp_defs.h"
#include "alert_handler_regs.h"
#include "flash_ctrl_regs.h"
#include "hw/top_earlgrey/sw/autogen/top_earlgrey.h"
#include "keymgr_regs.h"
#include "lc_ctrl_regs.h"
#include "otp_ctrl_regs.h"
#include "rstmgr_regs.h"
#include "rv_core_ibex_regs.h"
#include "sram_ctrl_regs.h"
#include "uart_regs.h"
static_assert(ALERT_HANDLER_ALERT_CLASS_SHADOWED_MULTIREG_COUNT <=
OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_CLASSIFICATION_SIZE / 4,
"More alerts than alert classification OTP words!");
static_assert(
ALERT_HANDLER_LOC_ALERT_CLASS_SHADOWED_MULTIREG_COUNT <=
OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_LOCAL_ALERT_CLASSIFICATION_SIZE / 4,
"More local alerts than local alert classification OTP words!");
#define NO_MODIFIERS
#ifndef OT_PLATFORM_RV32
// If we're building as a unit test, rename the shutdown functions so they
// can be mocked and/or tested individually.
// The unmodified function name will be declared as `extern` so the test
// program can supply its own implementation. The implementation present
// in this file will be named `unmocked_${name}` so the test program can
// invoke it for testing.
#define SHUTDOWN_FUNC(modifiers_, name_) \
extern void name_; \
void unmocked_##name_
#else
#define SHUTDOWN_FUNC(modifiers_, name_) \
OT_ALWAYS_INLINE \
static modifiers_ void name_
#endif
// Convert the alert class to an index.
// This is required because I expect to change the constant definitions in
// alert_class_t to have reasonable hamming distances.
static size_t clsindex(alert_class_t cls) {
switch (cls) {
case kAlertClassA:
return 0;
case kAlertClassB:
return 1;
case kAlertClassC:
return 2;
case kAlertClassD:
return 3;
default:
return 0;
}
}
rom_error_t shutdown_init(lifecycle_state_t lc_state) {
// `lc_shift` values for different lifecycle states.
enum {
kLcShiftProd = 0,
kLcShiftProdEnd = 8,
kLcShiftDev = 16,
kLcShiftRma = 24,
};
// Are we in a lifecycle state which needs alert configuration?
uint32_t lc_shift;
uint32_t lc_shift_masked;
switch (launder32(lc_state)) {
case kLcStateTest:
HARDENED_CHECK_EQ(lc_state, kLcStateTest);
// Don't configure alerts during manufacturing as OTP may not have been
// programmed yet.
return kErrorOk;
case kLcStateProd:
HARDENED_CHECK_EQ(lc_state, kLcStateProd);
lc_shift = kLcShiftProd;
// First operand is laundered to prevent constant-folding of
// xor-of-constants.
lc_shift_masked = launder32(kLcShiftProd) ^ kLcStateProd;
break;
case kLcStateProdEnd:
HARDENED_CHECK_EQ(lc_state, kLcStateProdEnd);
lc_shift = kLcShiftProdEnd;
lc_shift_masked = launder32(kLcShiftProdEnd) ^ kLcStateProdEnd;
break;
case kLcStateDev:
HARDENED_CHECK_EQ(lc_state, kLcStateDev);
lc_shift = kLcShiftDev;
lc_shift_masked = launder32(kLcShiftDev) ^ kLcStateDev;
break;
case kLcStateRma:
HARDENED_CHECK_EQ(lc_state, kLcStateRma);
lc_shift = kLcShiftRma;
lc_shift_masked = launder32(kLcShiftRma) ^ kLcStateRma;
break;
default:
HARDENED_UNREACHABLE();
}
// Get the enable and escalation settings for all four alert classes.
// Each of these OTP words is composed of 4 byte enums with the enable and
// escalate configs per alert class (a/b/c/d).
size_t i = 0;
rom_error_t error = kErrorOk;
uint32_t class_enable =
otp_read32(OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_CLASS_EN_OFFSET);
uint32_t class_escalate =
otp_read32(OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_ESCALATION_OFFSET);
alert_enable_t enable[ALERT_CLASSES];
alert_escalate_t escalate[ALERT_CLASSES];
for (i = 0; launder32(i) < ALERT_CLASSES; ++i) {
enable[i] = (alert_enable_t)bitfield_field32_read(
class_enable, (bitfield_field32_t){.mask = 0xff, .index = i * 8});
escalate[i] = (alert_escalate_t)bitfield_field32_read(
class_escalate, (bitfield_field32_t){.mask = 0xff, .index = i * 8});
}
if (i != ALERT_CLASSES) {
error = kErrorUnknown;
}
// For each alert, read its corresponding OTP word and extract the class
// configuration for the current lifecycle state.
for (i = 0; launder32(i) < ALERT_HANDLER_ALERT_CLASS_SHADOWED_MULTIREG_COUNT;
++i) {
uint32_t value =
otp_read32(OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_CLASSIFICATION_OFFSET +
i * sizeof(uint32_t));
alert_class_t cls = (alert_class_t)bitfield_field32_read(
value, (bitfield_field32_t){.mask = 0xff, .index = lc_shift});
rom_error_t e = alert_configure(i, cls, enable[clsindex(cls)]);
if (e != kErrorOk) {
// Keep going if there is an error programming one alert. We want to
// program them all.
error = e;
}
}
if (i != ALERT_HANDLER_ALERT_CLASS_SHADOWED_MULTIREG_COUNT) {
error = kErrorUnknown;
}
// For each local alert, read its corresponding OTP word and extract the class
// configuration for the current lifecycle state.
for (i = 0;
launder32(i) < ALERT_HANDLER_LOC_ALERT_CLASS_SHADOWED_MULTIREG_COUNT;
++i) {
uint32_t value = otp_read32(
OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_LOCAL_ALERT_CLASSIFICATION_OFFSET +
i * sizeof(uint32_t));
alert_class_t cls = (alert_class_t)bitfield_field32_read(
value, (bitfield_field32_t){.mask = 0xff, .index = lc_shift});
rom_error_t e = alert_local_configure(i, cls, enable[clsindex(cls)]);
if (e != kErrorOk) {
// Keep going if there is an error programming one alert. We want to
// program them all.
error = e;
}
}
if (i != ALERT_HANDLER_LOC_ALERT_CLASS_SHADOWED_MULTIREG_COUNT) {
error = kErrorUnknown;
}
// Check `lc_shift` value.
if ((lc_shift_masked ^ lc_state) != lc_shift) {
error = kErrorUnknown;
}
// For each alert class, configure the various escalation parameters.
const alert_class_t kClasses[] = {
kAlertClassA,
kAlertClassB,
kAlertClassC,
kAlertClassD,
};
alert_class_config_t config;
for (i = 0; launder32(i) < ALERT_CLASSES; ++i) {
config.enabled = enable[i];
config.escalation = escalate[i];
config.accum_threshold =
otp_read32(OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_ACCUM_THRESH_OFFSET +
i * sizeof(uint32_t));
config.timeout_cycles =
otp_read32(OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_TIMEOUT_CYCLES_OFFSET +
i * sizeof(uint32_t));
size_t phase = 0;
for (; launder32(phase) < ARRAYSIZE(config.phase_cycles); ++phase) {
config.phase_cycles[phase] = otp_read32(
OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ALERT_PHASE_CYCLES_OFFSET +
(i * ARRAYSIZE(config.phase_cycles) + phase) * sizeof(uint32_t));
}
if (phase != ARRAYSIZE(config.phase_cycles)) {
error = kErrorUnknown;
}
rom_error_t e = alert_class_configure(kClasses[i], &config);
if (e != kErrorOk) {
// Keep going if there is an error programming an alert class. We want to
// program them all.
error = e;
}
}
if (i != ALERT_CLASSES) {
error = kErrorUnknown;
}
return error;
}
/**
* Implementation of `shutdown_redact` that is guaranteed to be inlined.
*
* This function must be inlined because it is called from `shutdown_finalize`.
*/
OT_ALWAYS_INLINE
static uint32_t shutdown_redact_inline(rom_error_t reason,
shutdown_error_redact_t severity) {
uint32_t redacted = (uint32_t)reason;
if (reason == kErrorOk) {
return 0;
}
switch (severity) {
case kShutdownErrorRedactModule:
redacted = bitfield_field32_write(redacted, ROM_ERROR_FIELD_MODULE, 0);
OT_FALLTHROUGH_INTENDED;
case kShutdownErrorRedactError:
redacted = bitfield_field32_write(redacted, ROM_ERROR_FIELD_ERROR, 0);
OT_FALLTHROUGH_INTENDED;
case kShutdownErrorRedactNone:
break;
case kShutdownErrorRedactAll:
OT_FALLTHROUGH_INTENDED;
default:
redacted = kErrorUnknown;
}
return redacted;
}
uint32_t shutdown_redact(rom_error_t reason, shutdown_error_redact_t severity) {
return shutdown_redact_inline(reason, severity);
}
/**
* Implementation of `shutdown_redact_policy` that is guaranteed to be inlined.
*
* This function must be inlined because it is called from `shutdown_finalize`.
*/
OT_ALWAYS_INLINE
static shutdown_error_redact_t shutdown_redact_policy_inline(
uint32_t raw_state) {
switch (raw_state) {
case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED0:
case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED1:
case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED2:
case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED3:
case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED4:
case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED5:
case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED6:
case LC_CTRL_LC_STATE_STATE_VALUE_TEST_UNLOCKED7:
case LC_CTRL_LC_STATE_STATE_VALUE_RMA:
// No error redaction in TEST_UNLOCKED and RMA states.
return kShutdownErrorRedactNone;
case LC_CTRL_LC_STATE_STATE_VALUE_DEV:
case LC_CTRL_LC_STATE_STATE_VALUE_PROD:
case LC_CTRL_LC_STATE_STATE_VALUE_PROD_END:
// In production states use the redaction level specified in OTP.
return (shutdown_error_redact_t)abs_mmio_read32(
TOP_EARLGREY_OTP_CTRL_CORE_BASE_ADDR +
OTP_CTRL_SW_CFG_WINDOW_REG_OFFSET +
OTP_CTRL_PARAM_OWNER_SW_CFG_ROM_ERROR_REPORTING_OFFSET);
default:
// Redact everything if in an unexpected lifecycle state.
return kShutdownErrorRedactAll;
}
}
shutdown_error_redact_t shutdown_redact_policy(void) {
// Determine the error code redaction policy to apply according to the
// lifecycle state and OTP configuration.
//
// Note that we cannot use the lifecycle or OTP libraries since an error
// may trigger a call to `shutdown_finalize`.
uint32_t raw_state =
bitfield_field32_read(abs_mmio_read32(TOP_EARLGREY_LC_CTRL_BASE_ADDR +
LC_CTRL_LC_STATE_REG_OFFSET),
LC_CTRL_LC_STATE_STATE_FIELD);
return shutdown_redact_policy_inline(raw_state);
}
enum {
/**
* Length of the hexadecimal representation.
*/
kHexStrLen = 8,
/**
* Total message length.
*
* This includes 4 character prefix before the hex string '\r\n' at the end of
* the message.
*/
kErrorMsgLen = kHexStrLen + 6,
/**
* Base address of UART.
*/
kUartBase = TOP_EARLGREY_UART0_BASE_ADDR,
/**
* UART TX FIFO size.
*/
kUartFifoSize = 32,
};
/**
* Prints a fixed-length (`kErrorMsgLen`) error message.
*
* The error message is a concatenation of a 4 character `prefix` (encoded as a
* 32-bit value), the hexadecimal representation of `val`, and '\r\n'.
*
* @param prefix Prefix encoded as a 32-bit value.
* @param val Integer to print.
*/
OT_ALWAYS_INLINE
static void shutdown_print(shutdown_log_prefix_t prefix, uint32_t val) {
// Print the 4 character `prefix`.
abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, prefix);
abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, prefix >> 8);
abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, prefix >> 16);
abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, prefix >> 24);
// Print the hex representation of `val`.
const char kHexTable[16] = "0123456789abcdef";
// `kHexStrLen` is laundered so that it is loaded to a register at every
// iteration.
for (size_t i = 0; i < launder32(kHexStrLen); ++i) {
uint8_t nibble = bitfield_field32_read(
val, (bitfield_field32_t){.mask = 0xf, .index = (7 - i) * 4});
abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, kHexTable[nibble]);
}
abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, '\r');
abs_mmio_write32(kUartBase + UART_WDATA_REG_OFFSET, '\n');
}
SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_report_error(rom_error_t reason)) {
uint32_t raw_state =
bitfield_field32_read(abs_mmio_read32(TOP_EARLGREY_LC_CTRL_BASE_ADDR +
LC_CTRL_LC_STATE_REG_OFFSET),
LC_CTRL_LC_STATE_STATE_FIELD);
// Call the inline variant of `shutdown_redact_policy` because we want to
// guarantee that we won't jump to a different function.
shutdown_error_redact_t policy = shutdown_redact_policy_inline(raw_state);
// Call the inline variant of `shutdown_redact` because we want to guarantee
// that we won't jump to a different function.
uint32_t redacted_error = shutdown_redact_inline(reason, policy);
// Reset UART TX fifo and enable TX.
abs_mmio_write32(kUartBase + UART_FIFO_CTRL_REG_OFFSET,
bitfield_bit32_write(0, UART_FIFO_CTRL_TXRST_BIT, true));
uint32_t uart_ctrl_reg = abs_mmio_read32(kUartBase + UART_CTRL_REG_OFFSET);
uart_ctrl_reg = bitfield_bit32_write(uart_ctrl_reg, UART_CTRL_TX_BIT, true);
abs_mmio_write32(kUartBase + UART_CTRL_REG_OFFSET, uart_ctrl_reg);
// Print the error message and the raw life cycle state as reported by the
// hardware.
shutdown_print(kShutdownLogPrefixBootFault, redacted_error);
shutdown_print(kShutdownLogPrefixLifecycle, raw_state);
#ifdef OT_PLATFORM_RV32
// Wait until UART TX is complete.
static_assert(2 * kErrorMsgLen <= kUartFifoSize,
"Total message length must be less than TX FIFO size.");
CSR_WRITE(CSR_REG_MCYCLE, 0);
uint32_t mcycle;
bool tx_idle;
do {
tx_idle =
bitfield_bit32_read(abs_mmio_read32(kUartBase + UART_STATUS_REG_OFFSET),
UART_STATUS_TXIDLE_BIT);
CSR_READ(CSR_REG_MCYCLE, &mcycle);
} while (mcycle < kUartTxFifoCpuCycles && !tx_idle);
#endif
}
SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_software_escalate(void)) {
enum { kBase = TOP_EARLGREY_RV_CORE_IBEX_CFG_BASE_ADDR };
// Setting rv_core_ibex.SW_FATAL_ERR (rw0c) to any value other than
// `kMultiBitBool4False` will continuously cause alert events.
abs_mmio_write32(kBase + RV_CORE_IBEX_SW_FATAL_ERR_REG_OFFSET, 0);
}
SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_keymgr_kill(void)) {
enum {
kBase = TOP_EARLGREY_KEYMGR_BASE_ADDR,
};
uint32_t reg =
bitfield_field32_write(0, KEYMGR_CONTROL_SHADOWED_DEST_SEL_FIELD,
KEYMGR_CONTROL_SHADOWED_DEST_SEL_VALUE_NONE);
reg = bitfield_field32_write(reg, KEYMGR_CONTROL_SHADOWED_OPERATION_FIELD,
KEYMGR_CONTROL_SHADOWED_OPERATION_VALUE_DISABLE);
abs_mmio_write32_shadowed(kBase + KEYMGR_CONTROL_SHADOWED_REG_OFFSET, reg);
abs_mmio_write32(kBase + KEYMGR_START_REG_OFFSET, 1);
abs_mmio_write32(kBase + KEYMGR_SIDELOAD_CLEAR_REG_OFFSET, 1);
}
SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_reset(void)) {
enum { kBase = TOP_EARLGREY_RSTMGR_AON_BASE_ADDR };
abs_mmio_write32(kBase + RSTMGR_RESET_REQ_REG_OFFSET, kMultiBitBool4True);
}
SHUTDOWN_FUNC(NO_MODIFIERS, shutdown_flash_kill(void)) {
enum { kBase = TOP_EARLGREY_FLASH_CTRL_CORE_BASE_ADDR };
// Setting DIS (rw0c) to a value other than 5 will disable flash permanently.
abs_mmio_write32(kBase + FLASH_CTRL_DIS_REG_OFFSET, 0);
}
SHUTDOWN_FUNC(noreturn, shutdown_hang(void)) {
enum {
kSramCtrlBase = TOP_EARLGREY_SRAM_CTRL_MAIN_REGS_BASE_ADDR,
kRstmgrBase = TOP_EARLGREY_RSTMGR_AON_BASE_ADDR,
};
// Disable SRAM execution and lock the register.
// Note: In addition to this register, which is disabled by default at reset,
// SRAM execution is gated by the lifecycle state
// (SRAM_CTRL.INSTR.BUS.LC_GATED) and EN_SRAM_IFETCH item in the HW_CFG OTP
// partition.
abs_mmio_write32(kSramCtrlBase + SRAM_CTRL_EXEC_EN_OFFSET, 0);
abs_mmio_write32(kSramCtrlBase + SRAM_CTRL_EXEC_REGWEN_REG_OFFSET, 0);
// Switch to assembly as RAM (incl. stack) is about to get scrambled.
#ifdef OT_PLATFORM_RV32
asm volatile(
".L_shutdown_hang_asm_start:"
// Request a new scrambling key.
"sw %[kSramRenewKey], %[kSramCtrlCtrlReg](%[kSramCtrlBase]);"
// Request a system reset.
"sw %[kMultiBitBool4True], %[kRstmgrResetReqReg](%[kRstmgrBase]);"
// Reconfigure ePMP such that only this inline asm is executable:
// - Entry 1: TOR, LRX, [.L_shutdown_hang_asm_start,
// .L_shutdown_hang_asm_end).
// - Entry 2: NAPOT, L, entire address space.
// - MSECCFG: MMWP set RLB unset to prevent any further modifications.
"la t0, .L_shutdown_hang_asm_start;"
"srli t0, t0, 2;"
"csrw pmpaddr0, t0;"
"la t0, .L_shutdown_hang_asm_end;"
"srli t0, t0, 2;"
"csrw pmpaddr1, t0;"
"csrw pmpaddr2, %[kNapotEntireAddressSpace];"
"csrw pmpcfg0, %[kPmpCfg0];"
"csrw pmpcfg1, zero;"
"csrw pmpcfg2, zero;"
"csrw pmpcfg3, zero;"
"csrw %[kMSecCfgReg], %[kMSecCfgVal];"
// Generate a halt-maze.
"wfi; wfi; wfi; wfi; j .L_shutdown_hang_asm_start;"
"wfi; wfi; j .L_shutdown_hang_asm_start;"
"wfi; j .L_shutdown_hang_asm_start;"
".L_shutdown_hang_asm_end:"
:
: [kSramRenewKey] "r"(1 << SRAM_CTRL_CTRL_RENEW_SCR_KEY_BIT),
[kSramCtrlCtrlReg] "I"(SRAM_CTRL_CTRL_REG_OFFSET),
[kSramCtrlBase] "r"(kSramCtrlBase),
[kMultiBitBool4True] "r"(kMultiBitBool4True),
[kRstmgrResetReqReg] "I"(RSTMGR_RESET_REQ_REG_OFFSET),
[kRstmgrBase] "r"(kRstmgrBase),
[kNapotEntireAddressSpace] "r"(0x7fffffff),
[kPmpCfg0] "r"((EPMP_CFG_A_TOR | EPMP_CFG_LRX) << 8 |
(EPMP_CFG_A_NAPOT | EPMP_CFG_L) << 16),
[kMSecCfgReg] "I"(EPMP_MSECCFG), [kMSecCfgVal] "r"(EPMP_MSECCFG_MMWP));
OT_UNREACHABLE();
#endif
}
#ifdef OT_PLATFORM_RV32
/**
* The shutdown_finalize function goes into the .shutdown section which is
* placed by the linker script after all other executable code.
*/
__attribute__((section(".shutdown")))
#endif
void shutdown_finalize(rom_error_t reason) {
shutdown_report_error(reason);
shutdown_software_escalate();
shutdown_keymgr_kill();
// Reset before killing the flash to be able to use this also in flash.
shutdown_reset();
shutdown_flash_kill();
// If we get here, we'll wait for the watchdog to reset the chip.
shutdown_hang();
}